Abstract

Geothermal resources represent a valuable option to reduce fossil fuel-based power production because they feature an unmatched capacity factor among other renewable energy sources (RES). Geothermal resource availability reduces with the temperature. Therefore, developing cost-effective solutions to exploit low-temperature geothermal energy is mandatory to expand technology utilization. The standard solution for converting low-temperature thermal sources into power is organic rankine cycles (ORCs). ORC basic layout (subcritical) is well-known, but the more advanced alternatives, such as transcritical and two-pressure level cycles, are much less widespread, and it is unclear whether the higher efficiency justifies the higher capital cost. The paper focuses on the exploitation with ORC of geothermal resources (hot water) with a temperature lower than 200 °C and mass flow rates between 200 and 1400 m3/h for a target power production ranging from 3 to 30 MW. The paper compares three ORC layouts, subcritical, transcritical, and two pressure-level, from thermodynamic and economic points of view to map the most cost-effective solutions in the investigated size ranges. The techno-economic comparison considers the impact of the operating conditions and fluid on the machine's expected performance and the heat exchangers' size. As expected, more complicated layouts yield higher conversion efficiencies, with the two pressure-level cycles achieving the highest power output for the same geothermal source conditions. However, the economic analysis showed that the most efficient solutions are not always preferable when considering the cost-efficiency tradeoff.

References

1.
European Parliament and the Council of the European Union
,
2018
, “
Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy From Renewable Sources
,” Publications Office of the European Union, Luxembourg.http://data.europa.eu/eli/dir/2018/2001/oj
2.
IEA
,
2020
,
European Union 2020–Energy Policy Review
,
IEA
,
Paris, France
.
3.
Islam
,
M. T.
,
Nabi
,
M. N.
,
Arefin
,
M. A.
,
Mostakim
,
K.
,
Rashid
,
F.
,
Hassan
,
N. M. S.
,
Rahman
,
S. M. A.
,
McIntosh
,
S.
,
Mullins
,
B. J.
, and
Muyeen
,
S. M.
,
2022
, “
A Comprehensive Review on the Prospect of Geothermal Energy as an Alternative Source of Power
,”
Heliyon
,
8
(
12
), p.
e11836
.10.1016/j.heliyon.2022.e11836
4.
IEA
,
2021
,
World Energy Outlook 2021
,
International Energy Agency
,
Paris, France
.
5.
Loni
,
R.
,
Mahian
,
O.
,
Najafi
,
G.
,
Sahin
,
A. Z.
,
Rajaee
,
F.
,
Kasaeian
,
A.
,
Mehrpooya
,
M.
,
Bellos
,
E.
, and
Le Roux
,
W. G.
,
2021
, “
A Critical Review of Power Generation Using Geothermal-Driven Organic Rankine Cycle
,”
Therm. Sci. Eng. Prog.
,
25
(
July
), p.
101028
.10.1016/j.tsep.2021.101028
6.
Li
,
J.
,
Tarpani
,
R. R. Z.
,
Stamford
,
L.
, and
Gallego-Schmid
,
A.
,
2023
, “
Life Cycle Sustainability Assessment and Circularity of Geothermal Power Plants
,”
Sustain. Prod. Consum.
,
35
, pp.
141
156
.10.1016/j.spc.2022.10.027
7.
Barasa Kabeyi
,
M. J.
, and
Olanrewaju
,
O. A.
,
2022
, “
Geothermal Wellhead Technology Power Plants in Grid Electricity Generation: A Review
,”
Energy Strateg. Rev.
,
39
, p.
100735
.10.1016/j.esr.2021.100735
8.
Astolfi
,
M.
,
Romano
,
M. C.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium-Low Temperature Geothermal sources - Part B: Techno-Economic Optimization
,”
Energy
,
66
, pp.
435
446
.10.1016/j.energy.2013.11.057
9.
Astolfi
,
M.
,
Romano
,
M. C.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium–Low Temperature Geothermal Sources – Part A: Thermodynamic Optimization
,”
Energy
,
66
, pp.
423
434
.10.1016/j.energy.2013.11.056
10.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
, pp.
1250
1261
.10.1016/j.energy.2018.07.099
11.
Ghilardi
,
A.
,
Frate
,
G. F.
,
Baccioli
,
A.
,
Ulivieri
,
D.
,
Ferrari
,
L.
,
Desideri
,
U.
,
Cosi
,
L.
,
Amidei
,
S.
, and
Michelassi
,
V.
,
2023
, “
Techno-Economic Comparison of Several Technologies for Waste Heat Recovery of Gas Turbine Exhausts
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051006
.10.1115/1.4055872
12.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
13.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure andPseudo-Pure Fluid Thermophysical Property Evaluation and the Open-SourceThermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
14.
Guzović
,
Z.
,
Rašković
,
P.
, and
Blatarić
,
Z.
,
2014
, “
The Comparision of a Basic and a Dual-Pressure ORC (Organic Rankine Cycle): Geothermal Power Plant Velika Ciglena Case Study
,”
Energy
,
76
, pp.
175
186
.10.1016/j.energy.2014.06.005
15.
Surendran
,
A.
, and
Seshadri
,
S.
,
2019
, “
Performance Investigation of Two Stage Organic Rankine Cycle (ORC) Architectures Using Induction Turbine Layouts in Dual Source Waste Heat Recovery
,”
Energy Convers. Manag. X
,
6
, p.
100029
.10.1016/j.ecmx.2020.100029
16.
NFPA, 2007, NFPA 30: Flammable and Combustible Liquids Code, National Fire Prevention Association, Boston, MA.
17.
Kennoy
,
D. H.
, et al.,
2018
, Designation and Safety Classification of Refrigerants, ASHRAE, Atlanta, GA, Vol.
8400
.
18.
Dai
,
X.
,
Shi
,
L.
, and
Qian
,
W.
,
2019
, “
Review of the Working Fluid Thermal Stability for Organic Rankine Cycles
,”
J. Therm. Sci.
,
28
(
4
), pp.
597
607
.10.1007/s11630-019-1119-3
19.
Kolke
,
T.
, and
Gardlner
,
J. W. C.
,
1980
, “
Thermal Decomposition of Propane
,”
J. Phys. Chem
,
84
, pp.
2005
2009
.10.1021/j100453a003
20.
Arpagaus
,
C.
,
Bless
,
F.
,
Uhlmann
,
M.
,
Schiffmann
,
J.
, and
Bertsch
,
S. S.
,
2018
, “
High Temperature Heat Pumps: Market Overview, State of the Art, Research Status, Refrigerants, and Application Potentials
,”
Energy
,
152
, pp.
985
1010
.10.1016/j.energy.2018.03.166
21.
MathWorks
,
2023
, Constrained Nonlinear Optimization Algorithms,
MathWorks
,
Natick, MA
, accessed Jan. 6, 2023, https://it.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#f26684
22.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
, “
Sequential Quadratic Programming
,”
Numerical Optimization
, 2nd ed.,
Springer
,
New York
, pp.
529
561
.
23.
MathWorks
,
2023
, Multistart Algorithm,
MathWorks
,
Natick, MA
, accessed Jan. 6, 2023, https://it.mathworks.com/help/gads/multistart.html
24.
Macchi
,
E.
, and
Astolfi
,
M.
,
2017
, “
Axial Flow Turbines for Organic Rankine Cycle Applications
,”
Organic Rankine Cycle (ORC), Power Systems
,
Elsevier
, Amsterdam, The Netherlands, pp.
299
319
.
25.
de
,
G.
,
Sales
,
M.
,
Queiroz
,
E. M.
,
Nahes
,
A. L. M.
,
Bagajewicz
,
M. J.
, and
Costa
,
A. L. H.
,
2021
, “
Globally Optimal Design of Kettle Vaporizers
,”
Therm. Sci. Eng. Prog.
,
25
, p.
100962
.10.1016/j.tsep.2021.100962
26.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
L. T.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 6th ed., John Wiley & Sons Inc., Hoboken, NJ.
27.
Sinnott
,
R. K.
,
2005
,
Coulson Richardson's Chemical Engineering Chemical Engineering Design
, 4th ed., Vol.
6
,
Butterworth-Heinemann
,
Oxford, UK
.
28.
Faes
,
W.
,
Lecompte
,
S.
,
Van Bael
,
J.
,
Salenbien
,
R.
,
Bäßler
,
R.
,
Bellemans
,
I.
,
Cools
,
P.
,
De Geyter
,
N.
,
Morent
,
R.
,
Verbeken
,
K.
, and
De Paepe
,
M.
,
2019
, “
Corrosion Behaviour of Different Steel Types in Artificial Geothermal Fluids
,”
Geothermics
,
82
(
January
), pp.
182
189
.10.1016/j.geothermics.2019.05.018
29.
Turton
,
R.
,
2009
,
Analysis, Synthesis and Design of Chemical Processes
, No. 9, Prentice Hall, Upper Saddle River, NJ.
30.
Frate
,
G. F.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2019
, “
Analysis of Suitability Ranges of High Temperature Heat Pump Working Fluids
,”
Appl. Therm. Eng.
,
150
(
August
), pp.
628
640
.10.1016/j.applthermaleng.2019.01.034
31.
Lemmens
,
S.
,
2016
, “
Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems
,”
Energies
,
9
(
7
), pp.
485
503
.10.3390/en9070485
32.
Smith
,
R.
,
2005
,
Chemical Process Design and Integration
, John Wiley & Sons Ltd.,
Manchester
, UK, Vol.
44,
No. 8.
33.
Bahman
,
Z.
,
2013
,
Compact Heat Exchangers (Turkish)
, Springer International Publishing, Switzerland.
You do not currently have access to this content.