Abstract

The adaptive cycle engine (ACE) has multiple coupled components on the same spool and complex bypass system, which makes it have more complex intercomponent coupling relation and hard to coordinate in the flow path design. In this study, the coupling relation of the ACE components and the component reference conditions are analyzed and determined, a multicomponent collaborative optimization design method is proposed to enable the quantitative evaluation of flow path design solutions. In this method, two optimization strategies are presented based on the different priorities of the intercomponent size coupling parameters, the intercomponent aerodynamic coupling parameter and the component performance in the optimization problem. ACE flow path solutions for various feasible design speed combinations are generated automatically considering the component performance and intercomponent coupling relation. According to an ACE flow path design case study, the design physical rotational speeds of low-pressure spool (NL,d) and high-pressure spool (NH,d) should be 7000 to 7600 r/min and 10,000 to 15,000 r/min, respectively. At NH,d = 12,000 r/min and NL,d = 7200 r/min, the high-pressure compression components and the fan components could be designed with the lowest aerodynamic load, respectively. NH,d is the key factor affecting the axial length of ACE. This method can be applied to other gas power plant designs.

References

1.
Aygun
,
H.
,
Cilgin
,
M. E.
,
Ekmekci
,
I.
, and
Turan
,
O.
,
2020
, “
Energy and Performance Optimization of an Adaptive Cycle Engine for Next Generation Combat Aircraft
,”
Energy
,
209
, p.
118261
.10.1016/j.energy.2020.118261
2.
Sadraey
,
M. H.
,
2012
,
Aircraft Design: A Systems Engineering Approach
,
Wiley, Hoboken, NJ
.
3.
Zheng
,
J.
,
Chen
,
M.
, and
Tang
,
H.
,
2017
, “
Matching Mechanism Analysis on an Adaptive Cycle Engine
,”
Chin. J. Aeronaut.
,
30
(
2
), pp.
706
718
.10.1016/j.cja.2017.02.006
4.
GE Aerospace
,
2024
, “
XA100 Adaptive Cycle Engine
,” GE Aerospace, Cincinnati, OH, accessed Mar. 6, 2024, https://www.geaerospace.com/propulsion/military/xa100
5.
Meng
,
X.
,
Yang
,
X.
,
Chen
,
M.
, and
Zhu
,
Z.
,
2018
, “
High-Level Power Extraction From Adaptive Cycle Engine for Directed Energy Weapon
,”
AIAA
Paper No. 2018-4518.10.2514/6.2018-4518
6.
Zhang
,
J.
,
Tang
,
H.
, and
Chen
,
M.
,
2019
, “
Linear Substitute Model-Based Uncertainty Analysis of Complicated Non-Linear Energy System Performance (Case Study of an Adaptive Cycle Engine)
,”
Appl. Energy
,
249
, pp.
87
108
.10.1016/j.apenergy.2019.04.138
7.
Zheng
,
J.
,
Tang
,
H.
,
Chen
,
M.
, and
Yin
,
F.-J.
,
2018
, “
Equilibrium Running Principle Analysis on an Adaptive Cycle Engine
,”
Appl. Therm. Eng.
,
132
, pp.
393
409
.10.1016/j.applthermaleng.2017.12.102
8.
Lyu
,
Y.
,
Tang
,
H.
, and
Chen
,
M.
,
2016
, “
A Study on Combined Variable Geometries Regulation of Adaptive Cycle Engine During Throttling
,”
Appl. Sci.
,
6
(
12
), p.
374
.10.3390/app6120374
9.
Murthy
,
S. N. B.
, and
Curran
,
E. T.
,
1996
, “
Variable Cycle Engine Developments at General Electric-1955-1995, in: Developments in High-Speed Vehicle Propulsion Systems
,”
Prog. Astronautics Aeronautics
,
165
, pp.
105
158
.10.2514/5.9781600866401.0105.0158
10.
Salah
,
S. I.
,
Crespi
,
F.
,
White
,
M. T.
,
Muñoz
,
A.
,
Paggini
,
A.
,
Ruggiero
,
M.
,
Sánchez
,
D.
, and
Sayma
,
A. I.
,
2023
, “
Axial Turbine Flow Path Design for Concentrated Solar Power Plants Operating With CO2 Blends
,”
Appl. Therm. Eng.
,
230
, p.
120612
.10.1016/j.applthermaleng.2023.120612
11.
Kler
,
A.
, and
Zakharov
,
Y.
,
2017
, “
Joint Optimization of Power Plant Cycle Parameters and Gas Turbine Flow Path Parameters With Blade Airfoils Represented by Cubic Splines
,”
Energy
,
137
, pp.
183
192
.10.1016/j.energy.2017.07.020
12.
Xu
,
Z.
,
Li
,
M.
,
Tang
,
H.
, and
Chen
,
M.
,
2022
, “
A Multi-Fidelity Simulation Method Research on Front Variable Area Bypass Injector of an Adaptive Cycle Engine
,”
Chin. J. Aeronaut.
,
35
(
4
), pp.
202
219
.10.1016/j.cja.2021.08.034
13.
Mattingly
,
J. D.
,
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
,
Aircraft Engine Design
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
VA
.
14.
Fishbach
,
L. H.
,
1984
, “
PREPWATE–an Interactive Preprocessing Computer Code to the Weight Analysis of Turbine Engines (WATE) Computer Code
,” NASA Report No. NASA-TM-83545.
15.
Tong
,
M. T.
, and
Naylor
,
B. A.
,
2009
, “
An Object-Oriented Computer Code for Aircraft Engine Weight Estimation
,” NASA Report No. NASA/TM-2009-215656.
16.
Stricker
,
J. M.
, and
Norden
,
C. M.
,
1991
, “
Computerized Preliminary Design of Turbomachinery
,”
ASME
Paper No. 91-GT-391.10.1115/91-GT-391
17.
Sanghi
,
V.
,
Kishore
,
S. K.
,
Sundararajan
,
V.
, and
Sane
,
S. K.
,
1998
, “
Preliminary Estimation of Engine Gas-Flow-Path Size and Weight
,”
J. Propul. Power.
,
14
(
2
), pp.
208
214
.10.2514/2.5269
18.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
, 2nd ed.,
Blackwell Science
,
Hoboken, NJ
.
19.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
J. R. Aeronaut. Soc.
,
69
(
655
), pp.
467
470
.10.1017/S0001924000059108
20.
Meng
,
Y.
,
Zhang
,
Y.
,
Wang
,
J.
,
Chen
,
S.
,
Hou
,
Y.
, and
Chen
,
L.
,
2023
, “
Performance Optimization of Turboexpander-Compressors for Energy Recovery in Small Air-Separation Plants
,”
Energy
,
271
, p.
126917
.10.1016/j.energy.2023.126917
21.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
,
Propulsion and Power: An Exploration of Gas Turbine Performance Modeling
,
Springer
,
Berlin
.
22.
Glassman
,
A. J.
,
1992
, “
Computer Code for Preliminary Sizing Analysis of Axial-Flow Turbines
,” NASA Report No. NASA-CR-4430.
23.
Glassman
,
A. J.
,
1992
, “
Users Manual for Updated Computer Code for Axial-Flow Compressor Conceptual Design
,” NASA Report No.
NASA-CR-189171
.https://ntrs.nasa.gov/citations/19920020964
24.
Turner
,
M. G.
,
Merchant
,
A.
, and
Bruna
,
D.
,
2011
, “
A Turbomachinery Design Tool for Teaching Design Concepts for Axial-Flow Fans, Compressor, and Turbines
,”
ASME J. Turbomach.
,
133
(
3
), p.
031017
.10.1115/1.4001240
25.
Lieblein
,
S.
,
1959
, “
Loss and Stall Analysis in Compressor Cascades
,”
ASME J. Basic. Eng.
,
81
(
3
), pp.
387
397
.10.1115/1.4008481
26.
Wright
,
P. I.
, and
Miller
,
D. C.
,
1991
, “
An Improved Compressor Performance Prediction Model
,”
Rolls-Royce plc
, Derby, UK.
27.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
.10.1115/1.2929095
28.
Miller
,
G. R.
,
Lewis
,
G. W.
, and
Hartmann
,
M. J.
,
1961
, “
Shock Losses in Transonic Compressor Blade Rows
,”
ASME J. Eng. Power
,
83
(
3
), pp.
235
241
.10.1115/1.3673182
29.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
,
104
(
1
), pp.
111
119
.10.1115/1.3227240
30.
Tournier
,
J.
, and
El-Genk
,
M. S.
,
2010
, “
Axial Flow, Multi-Stage Turbine and Compressor Model
,”
Energy Convers. Manage.
,
51
(
1
), pp.
16
29
.10.1016/j.enconman.2009.08.005
31.
Glassman
,
A. J.
, and
Lavelle
,
T. M.
,
1995
, “
Enhanced Capabilities and Modified Users Manual for Axial-Flow Compressor Conceptual Design Code CSPAN
,” NASA Report No.
NASA-TM-106833
.https://ntrs.nasa.gov/citations/19950012518
32.
Thulin
,
R. D.
,
Howe
,
D. C.
, and
Singer
,
I. D.
,
1984
, “
Energy Efficient Engine High-Pressure Turbine Detailed Design Report
,” NASA Report No.
NASA-CR-165608
.https://ntrs.nasa.gov/citations/19840020719
33.
Leach
,
K.
,
Thulin
,
R.
, and
Howe
,
D.
,
1982
, “
Turbine Intermediate Case and Low-Pressure Turbine Component Test Hardware Detailed Design Report
,” NASA Report No.
NASA-CR-167973
.https://ntrs.nasa.gov/citations/19840020720
34.
Howe
,
D. C.
, and
Marchant
,
R. D.
,
1988
, “
Energy Efficient Engine: High-Pressure Compressor Test Hardware Detailed Design Report
,” NASA Report No.
NASA-CR-180850
.https://ntrs.nasa.gov/citations/19900019254
35.
Becker
,
R.-G.
,
Reitenbach
,
S.
,
Klein
,
C.
,
Otten
,
T.
,
Nauroz
,
M.
, and
Siggel
,
M.
,
2015
, “
An Integrated Method for Propulsion System Conceptual Design
,”
ASME
Paper No. GT2015-43251.10.1115/GT2015-43251
36.
Shakariyants
,
S. A.
,
Buijtenen
,
J. P. V.
, and
Visser
,
W. P. J.
,
2004
, “
Generic Geometry Definition of the Aircraft Engine Combustion Chamber
,”
ASME
Paper No. GT2004-53522.10.1115/GT2004-53522
37.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
Taylor & Francis Group
,
New York
.
38.
Britchford
,
K. M.
,
1998
, “
The Aerodynamic Behaviour of an Annular S-Shaped Duct
,”
Ph.D. dissertation
,
Loughborough University
,
Loughborough, Leicestershire, UK
.https://repository.lboro.ac.uk/articles/thesis/The_aerodynamic_behaviour_of_an_annular_Sshaped_duct/9212087
39.
Kim
,
S.
,
Son
,
C.
, and
Kim
,
K.
,
2017
, “
Combining Effect of Optimized Axial Compressor Variable Guide Vanes and Bleed Air on the Thermodynamic Performance of Aircraft Engine System
,”
Energy
,
119
, pp.
199
210
.10.1016/j.energy.2016.12.076
40.
Jia
,
L.
,
Chen
,
Y.
,
Cheng
,
R.
,
Tan
,
T.
, and
Song
,
K.
,
2021
, “
Designing Method of Acceleration and Deceleration Control Schedule for Variable Cycle Engine
,”
Chin. J. Aeronaut.
,
34
(
5
), pp.
27
38
.10.1016/j.cja.2020.08.037
41.
Xu
,
Z.
,
Tang
,
H.
,
Cong
,
J.
, and
Chen
,
M.
,
2022
, “
An Efficient Multi-Fidelity Simulation Method for Adaptive Cycle Engine Ejector Nozzle Performance Evaluation
,”
Aerosp. Sci. Technol.
,
124
, p.
107568
.10.1016/j.ast.2022.107568
42.
Chen
,
M.
,
Zhang
,
J.
, and
Tang
,
H.
,
2018
, “
Performance Analysis of a Three-Stream Adaptive Cycle Engine During Throttling
,”
Int. J. Aerosp. Eng.
,
2018
, pp.
1
16
.10.1155/2018/9237907
43.
Liu
,
B.
,
Wang
,
R.
, and
Yu
,
X.
,
2020
, “
On the Mode Transition of a Double Bypass Variable Cycle Compression System
,”
Aerosp. Sci. Technol.
,
98
, p.
105743
.10.1016/j.ast.2020.105743
44.
Xu
,
Y.
,
Tang
,
H.
, and
Chen
,
M.
,
2022
, “
Design Method of Optimal Control Schedule for the Adaptive Cycle Engine Steady-State Performance
,”
Chin. J. Aeronaut.
,
35
(
4
), pp.
148
164
.10.1016/j.cja.2021.08.025
45.
Aygun
,
H.
, and
Turan
,
O.
,
2020
, “
Exergetic Sustainability Off-Design Analysis of Variable-Cycle Aero Engine in Various Bypass Modes
,”
Energy
,
195
, p.
117008
.10.1016/j.energy.2020.117008
46.
Simmons
,
R. J.
,
2009
, “
Design and Control of a Variable Geometry Turbofan With an Independently Modulated Third Stream
,”
Ph.D. dissertation
,
The Ohio State University
,
Columbus, OH
.https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=osu1243607482&disposition=inline
47.
Patel
,
H. R.
, and
Wilson
,
D. R.
,
2018
, “
Parametric Cycle Analysis of Adaptive Cycle Engine
,”
AIAA
Paper No. 2018-4521.10.2514/6.2018-4521
You do not currently have access to this content.