Abstract

In this experimental study, we are presenting the ability of laser-induced plasmas with successive pulsation to identify combustion instabilities (CI) of a premixed lab-scale combustor. An acoustic disturbance equivalent to a shockwave perturbation is generated in the main air supply line of a swirled injector prior to the fuel addition by focusing nanosecond laser pulses of 1.6 W average power at 10 Hz. The shockwaves are attenuated to be strong pressure waves when reaching the combustor and impact the pressure field for short periods. After plasma breakdowns, the system returns back to its original state after 4 ms once the added acoustic energy has been fully dissipated. Given a set geometry, it is observed that the laser-induced breakdown amplifies the characteristic frequency peaks of the combustor system when actuated in cold flow. Furthermore, when applied to reacting flows, the pulsating acoustic perturbations impact the pressure fluctuation in the combustor, e.g., reducing the amplitude of the primary characteristic frequency peak at certain conditions. The identification of the main instability modes thanks to the plasma shockwave provides proof of the potential use of this novel diagnosis strategy in various and complex combustion systems.

References

1.
Sirignano
,
W. A.
,
2015
, “
Driving Mechanisms for Combustion Instability
,”
Combust. Sci. Technol.
,
187
(
1–2
), pp.
162
205
.10.1080/00102202.2014.973801
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
, Alexander Bell Drive, Reston, VA.10.2514/4.866807
3.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
4.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.10.2514/2.6182
5.
Lieuwen
,
T.
, and
Cho
,
J. H.
,
2005
, “
Coherent Acoustic Wave Amplification/Damping by Wrinkled Flames
,”
J. Sound Vib.
,
279
(
3–5
), pp.
669
686
.10.1016/j.jsv.2003.11.050
6.
Stöhr
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2017
, “
Interaction Between Velocity Fluctuations and Equivalence Ratio Fluctuations During Thermoacoustic Oscillations in a Partially Premixed Swirl Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3907
3915
.10.1016/j.proci.2016.06.084
7.
Kim
,
K. T.
, and
Santavicca
,
D. A.
,
2013
, “
Interference Mechanisms of Acoustic/Convective Disturbances in a Swirl-Stabilized Lean-Premixed Combustor
,”
Combust. Flame
,
160
(
8
), pp.
1441
1457
.10.1016/j.combustflame.2013.02.022
8.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “
Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes?
,”
Combust. Flame
,
142
(
1–2
), pp.
153
159
.10.1016/j.combustflame.2005.02.013
9.
Buschhagen
,
T.
,
Gejji
,
R.
,
Philo
,
J.
,
Tran
,
L.
,
Bilbao
,
J. E. P.
, and
Slabaugh
,
C. D.
,
2019
, “
Self-Excited Transverse Combustion Instabilities in a High Pressure Lean Premixed Jet Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5181
5188
.10.1016/j.proci.2018.07.086
10.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
11.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
12.
Hernández
,
I.
,
Staffelbach
,
G.
,
Poinsot
,
T.
,
Casado
,
J. C. R.
, and
Kok
,
J. B. W.
,
2013
, “
LES and Acoustic Analysis of Thermo-Acoustic Instabilities in a Partially Premixed Model Combustor
,”
C. R. Méc.
,
341
(
1–2
), pp.
121
130
.10.1016/j.crme.2012.11.003
13.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
14.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.10.1016/j.combustflame.2013.03.004
15.
Andreini
,
A.
,
Facchini
,
B.
,
Giusti
,
A.
, and
Turrini
,
F.
,
2014
, “
Assessment of Flame Transfer Function Formulations for the Thermoacoustic Analysis of Lean Burn Aero-Engine Combustors
,”
Energy Proc.
,
45
, pp.
1422
1431
.10.1016/j.egypro.2014.01.149
16.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Palies
,
P.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2012
, “
Progress and Challenges in Swirling Flame Dynamics
,”
C. R. Mec.
,
340
(
11–12
), pp.
758
768
.10.1016/j.crme.2012.10.024
17.
Oztarlik
,
G.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2020
, “
Suppression of Instabilities of Swirled Premixed Flames With Minimal Secondary Hydrogen Injection
,”
Combust. Flame
,
214
, pp.
266
276
.10.1016/j.combustflame.2019.12.032
18.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
19.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
Swirling Flame Instability Analysis Based on the Flame Describing Function Methodology
,”
ASME
Paper No. GT2010-22294.10.1115/GT2010-22294
20.
Schimek
,
S.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2011
, “
An Experimental Investigation of the Nonlinear Response of an Atmospheric Swirl-Stabilized Premixed Flame
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
101502
.10.1115/1.4002946
21.
Prieur
,
K.
,
Durox
,
D.
,
Vignat
,
G.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Experimental Determinations of Flame Describing Functions of Swirling Spray Flames
,” Colloque INCA, Châteaufort, France, Oct.
18
19
.
22.
Pankiewitz
,
C.
, and
Sattelmayer
,
T.
,
2003
, “
Time Domain Simulation of Combustion Instabilities in Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
677
685
.10.1115/1.1582496
23.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
24.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Campa
,
G.
,
2011
, “
A Finite Element Method for Three-Dimensional Analysis of Thermo-Acoustic Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011506
.10.1115/1.4000606
25.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.10.1017/S0022112097006484
26.
Geigle
,
K. P.
,
Meier
,
W.
,
Aigner
,
M.
,
Willert
,
C.
,
Jarius
,
M.
,
Schmitt
,
P.
, and
Schuermans
,
B.
,
2006
, “
Phase Resolved Laser Diagnostic Measurements of a Downscaled, Fuel Staged Gas Turbine Combustor at Elevated Pressure and Comparison With LES Predictions
,”
ASME J. Eng. Gas Turbines Power, 129(3),
pp.
680
687
.10.1115/1.2718222
27.
Sengissen
,
A. X.
,
Van Kampen
,
J. F.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T. J.
,
2007
, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner With and Without Fuel Modulation
,”
Combust. Flame
,
150
(
1–2
), pp.
40
53
.10.1016/j.combustflame.2007.02.009
28.
Gentemann
,
A.
,
Hirsch
,
C.
,
Kunze
,
K.
,
Kiesewetter
,
F.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2004
, “
Validation of Flame Transfer Function Reconstruction for Perfectly Premixed Swirl Flames
,”
ASME
Paper No. GT2004-53776. 10.1115/GT2004-53776
29.
Cheung
,
W. S.
,
Sims
,
G. J. M.
,
Copplestone
,
R. W.
,
Tilston
,
J. R.
,
Wilson
,
C. W.
,
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2003
, “
Measurement and Analysis of Flame Transfer Function in a Sector Combustor Under High Pressure Conditions
,”
ASME
Paper No. GT2003-38219. 10.1115/GT2003-38219
30.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.10.1115/1.3204532
31.
Kim
,
K. T.
, and
Santavicca
,
D.
,
2009
, “
Linear Stability Analysis of Acoustically Driven Pressure Oscillations in a Lean Premixed Gas Turbine Combustor
,”
J. Mech. Sci. Technol.
,
23
(
12
), pp.
3436
3447
.10.1007/s12206-009-0924-0
32.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.10.1016/j.combustflame.2010.04.016
33.
Jisoo
,
Y.
,
2017
, “
High Harmonic Combustion Instability Characteristics of H2/CH4 Fuel in a Partially Premixed Combustor
,”
Ph.D. thesis
,
Seoul National University,
Seoul, South Korea.https://s-space.snu.ac.kr/bitstream/10371/118580/1/000000140953.pdf
34.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
765
773
.10.1016/S0082-0784(00)80279-9
35.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.10.1016/j.proci.2008.06.204
36.
Freitag
,
E.
,
Konle
,
H.
,
Lauer
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Pressure Influence on the Flame Transfer Function of a Premixed Swirling Flame
,”
ASME
Paper No. GT2006-90540. 10.1115/GT2006-90540
37.
Schuermans
,
B.
,
Guethe
,
F.
,
Pennell
,
D.
,
Guyot
,
D.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111503
.10.1115/1.4000854
38.
Bunce
,
N.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2011
, “
Mixture-Forced Flame Transfer Function Measurements and Mechanisms in a Single-Nozzle Combustor at Elevated Pressure
,”
ASME
Paper No. GT2011-46744. 10.1115/GT2011-46744
39.
Hochgreb
,
S.
,
Dennis
,
D.
,
Ayranci
,
I.
,
Bainbridge
,
W.
, and
Cant
,
S.
,
2013
, “
Forced and Self-Excited Instabilities From Lean Premixed, Liquid-Fuelled Aeroengine Injectors at High Pressures and Temperatures
,”
ASME
Paper No. GT2013-95311. 10.1115/GT2013-95311
40.
Zhang
,
J.
, and
Ratner
,
A.
,
2017
, “
Effect of Pressure Variation on Acoustically Perturbed Swirling Flames
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3881
3888
.10.1016/j.proci.2016.06.059
41.
Di Sabatino
,
F.
,
Guiberti
,
T. F.
,
Boyette
,
W. R.
,
Roberts
,
W. L.
,
Moeck
,
J. P.
, and
Lacoste
,
D. A.
,
2018
, “
Effect of Pressure on the Transfer Functions of Premixed Methane and Propane Swirl Flames
,”
Combust. Flame
,
193
, pp.
272
282
.10.1016/j.combustflame.2018.03.011
42.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2013
, “
Impact of Flame Base Dynamics on the Non-Linear Frequency Response of Conical Flames
,”
C. R. Méc.
,
341
(
1–2
), pp.
171
180
.10.1016/j.crme.2012.11.004
43.
Candel
,
S.
,
Durox
,
D.
,
Ducruix
,
S.
,
Birbaud
,
A.-L.
,
Noiray
,
N.
, and
Schuller
,
T.
,
2009
, “
Flame Dynamics and Combustion Noise: Progress and Challenges
,”
Int. J. Aeroacoust.
,
8
(
1
), pp.
1
56
.10.1260/147547209786234984
44.
Kedia
,
K. S.
,
Altay
,
H. M.
, and
Ghoniem
,
A. F.
,
2011
, “
Impact of Flame-Wall Interaction on Premixed Flame Dynamics and Transfer Function Characteristics
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1113
1120
.10.1016/j.proci.2010.06.132
45.
Han
,
X.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Prediction of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations With a Thermoacoustic Network Model
,”
Combust. Flame
,
162
(
10
), pp.
3632
3647
.10.1016/j.combustflame.2015.06.020
46.
Xia
,
Y.
,
Laera
,
D.
,
Jones
,
W. P.
, and
Morgans
,
A. S.
,
2019
, “
Numerical Prediction of the Flame Describing Function and Thermoacoustic Limit Cycle for a Pressurised Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
191
(
5–6
), pp.
979
1002
.10.1080/00102202.2019.1583221
47.
Xia
,
Y.
,
Li
,
J.
,
Morgans
,
A. S.
, and
Han
,
X.
,
2017
, “
Computation of Local Flame Describing Functions for Thermoacoustic Oscillations in a Combustor With a Long Flame
,” Proceedings of the 8th European Combustion Meeting (
ECM8
), Dubrovnik, Croatia, Apr.
18
21
.10.13140/RG.2.2.14596.22403
48.
Yang
,
D.
,
Laera
,
D.
, and
Morgans
,
A. S.
,
2019
, “
A Systematic Study of Nonlinear Coupling of Thermoacoustic Modes in Annular Combustors
,”
J. Sound Vib.
,
456
, pp.
137
161
.10.1016/j.jsv.2019.04.025
49.
Li
,
J.
, and
Morgans
,
A. S.
,
2016
, “
Feedback Control of Combustion Instabilities From Within Limit Cycle Oscillations Using H Loop-Shaping and the ν-Gap Metric
,”
Proc. R. Soc. A
,
472
(
2191
), p.
20150821
.10.1098/rspa.2015.0821
50.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
51.
Krediet
,
H. J.
,
Beck
,
C. H.
,
Krebs
,
W.
, and
Kok
,
J. B. W.
,
2013
, “
Saturation Mechanism of the Heat Release Response of a Premixed Swirl Flame Using LES
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1223
1230
.10.1016/j.proci.2012.06.140
52.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K.-P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
570
, pp.
17
46
.10.1017/S0022112006003156
53.
Fureby
,
C.
,
2010
, “
LES of a Multi-Burner Annular Gas Turbine Combustor
,”
Flow, Turbul. Combust.
,
84
(
3
), pp.
543
564
.10.1007/s10494-009-9236-9
54.
Tay Wo Chong
,
L.
,
Komarek
,
T.
,
Kaess
,
R.
,
Föller
,
S.
, and
Polifke
,
W.
,
2010
, “
Identification of Flame Transfer Functions From LES of a Premixed Swirl Burner
,”
ASME
Paper No. GT2010-22769. 10.1115/GT2010-22769
55.
Krediet
,
H. J.
,
Beck
,
C. H.
,
Krebs
,
W.
,
Schimek
,
S.
,
Paschereit
,
C. O.
, and
Kok
,
J. B. W.
,
2012
, “
Identification of the Flame Describing Function of a Premixed Swirl Flame From LES
,”
Combust. Sci. Technol.
,
184
(
7–8
), pp.
888
900
.10.1080/00102202.2012.663981
56.
Gicquel
,
L. Y. M.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.10.1016/j.pecs.2012.04.004
57.
Bölke
,
O.
,
Lacoste
,
D. A.
, and
Moeck
,
J. P.
,
2018
, “
Low-Frequency Sound Generation by Modulated Repetitively Pulsed Nanosecond Plasma Discharges
,”
J. Phys. D: Appl. Phys.
,
51
(
30
), p.
305203
.10.1088/1361-6463/aacc93
58.
Kim
,
K. T.
,
Lee
,
H. J.
,
Lee
,
J. G.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2009
, “
Flame Transfer Function Measurement and Instability Frequency Prediction Using a Thermoacoustic Model
,”
ASME
Paper No. GT2009-60026.10.1115/GT2009-60026
You do not currently have access to this content.