Abstract

This paper investigates water injection effects in a simplified Ansaldo GT36 reheat system under realistic conditions of 20 atm using large eddy simulation (LES) coupled with thickened flame modeling and adaptive mesh refinement. The water injection conditions are optimized by performing a parametric study based on global sensitivity analysis (GSA) with a surrogate model based on Gaussian process (GP) to reduce computational cost. In particular, the influence of four design parameters, namely, Sauter mean diameter (SMD), water mass flow, and the angles of the spray's hollow cone, is tested to achieve an optimized solution. In the “dry” case, the LES simulations show several flashback events attributed to compressive pressure waves resulting from auto-ignition in the core flow near the crossover temperature. The use of water injection is found to be effective in suppressing the flashback occurrence. In particular, the global sensitivity analysis shows that the external angle of the spray cone and the mass flow of water are the most important design parameters for flashback prevention. NOx emissions are reduced by about 17% with water injection. Once an optimized condition with water injection is found, a recently proposed method to downscale the combustor to lower pressures is applied and tested. Additional LESs are performed for this purpose at the dry, unstable condition and the “wet,” stable condition. Results show that similar dynamics are predicted at 1 atm, validating the method's robustness. This provides avenues for experimentally testing combustion dynamics at simplified conditions which are still representative of high-pressure practical configurations.

References

1.
International Energy Authority
,
2022
,
World Energy Outlook 2022
,
IEA
,
Paris, France
.
2.
Lammel
,
G.
, and
Graßl
,
H.
,
1995
, “
Greenhouse Effect of NOx
,”
Environ. Sci. Pollut. Res.
,
2
(
1
), pp.
40
45
.10.1007/BF02987512
3.
Benim
,
A. C.
, and
Syed
,
K. J.
,
2014
,
Flashback Mechanisms in Lean Premixed Gas Turbine Combustion
,
Elsevier Academic Press
,
Boston, MA
.
4.
Strohle
,
J.
, and
Myhrvold
,
T.
,
2007
, “
An Evaluation of Detailed Reaction Mechanisms for Hydrogen Combustion Under Gas Turbine Conditions
,”
Int. J. Hydrogen Energy
,
32
(
1
), pp.
125
135
.10.1016/j.ijhydene.2006.04.005
5.
Bhargava
,
A.
,
Colket
,
M.
,
Sowa
,
W.
,
Casleton
,
K.
, and
Maloney
,
D.
,
2000
, “
An Experimental and Modeling Study of Humid Air Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
122
(
3
), pp.
405
411
.10.1115/1.1286921
6.
Nemitallah
,
M.
,
Rashwan
,
S.
,
Mansir
,
I.
,
Abdelhafez
,
A.
, and
Habib
,
M. A.
,
2018
, “
Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines
,”
Energy Fuels
,
32
(
2
), pp.
979
1004
.10.1021/acs.energyfuels.7b03607
7.
Lellek
,
S.
,
Barfuß
,
C.
, and
Sattelmayer
,
T.
,
2017
, “
Experimental Study of the Interaction of Water Sprays With Swirling Premixed Natural Gas Flames
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021506
.10.1115/1.4034238
8.
Tanneberger
,
T.
,
Schimek
,
S.
,
Paschereit
,
C. O.
, and
Stathopoulos
,
P.
,
2019
, “
Combustion Efficiency Measurements and Burner Characterization in a Hydrogen-Oxyfuel Combustor
,”
Int. J. Hydrogen Energy
,
44
(
56
), pp.
29752
29764
.10.1016/j.ijhydene.2019.05.055
9.
Amani
,
E.
,
Akbari
,
M.
, and
Shahpouri
,
S.
,
2018
, “
Multi-Objective CFD Optimizations of Water Spray Injection in Gas-Turbine Combustors
,”
Fuel
,
227
, pp.
267
278
.10.1016/j.fuel.2018.04.093
10.
Farokhipour
,
A.
,
Hamidpour
,
E.
, and
Amani
,
E.
,
2018
, “
A Numerical Study of NOx Reduction by Water Spray Injection in Gas Turbine Combustion Chambers
,”
Fuel
,
212
, pp.
173
186
.10.1016/j.fuel.2017.10.033
11.
Pappa
,
A.
,
Bricteux
,
L.
,
Bénard
,
P.
, and
De Paepe
,
W.
,
2021
, “
Can Water Dilution Avoid Flashback on a Hydrogen-Enriched Micro-Gas Turbine Combustion?—A Large Eddy Simulations Study
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041008
.10.1115/1.4049798
12.
Gruber
,
A.
,
Heggset
,
T.
,
Duesing
,
M.
, and
Ciani
,
A.
,
2022
, “
A Numerical Investigation of Reheat Hydrogen Combustion in a Simplified Geometrical Configuration From Atmospheric Pressure to Full Load Conditions
,”
ASME
Paper No. GT2022-83218.10.1115/GT2022-83218
13.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
14.
Aditya
,
K.
,
Gruber
,
A.
,
Xu
,
C.
,
Lu
,
T.
,
Krisman
,
A.
,
Bothien
,
M. R.
, and
Chen
,
J. H.
,
2019
, “
Direct Numerical Simulation of Flame Stabilization Assisted by Autoignition in a Reheat Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2635
2642
.10.1016/j.proci.2018.06.084
15.
Rieth
,
M.
,
Gruber
,
A.
,
Williams
,
F. A.
, and
Chen
,
J. H.
,
2022
, “
Enhanced Burning Rates in Hydrogen-Enriched Turbulent Premixed Flames by Diffusion of Molecular and Atomic Hydrogen
,”
Combust. Flame
,
239
, p.
111740
.10.1016/j.combustflame.2021.111740
16.
Rieth
,
M.
,
Gruber
,
A.
, and
Chen
,
J. H.
,
2023
, “
The Effect of Pressure on Lean Premixed Hydrogen-Air Flames
,”
Combust. Flame
,
250
, p.
112514
.10.1016/j.combustflame.2022.112514
17.
Kruljevic
,
B.
,
Cabello
,
A.
,
Ciani
,
A.
,
Langella
,
I.
, and
Duesing
,
M.
,
2023
, “
LES/Thickened Flame Model of Reheat Hydrogen Combustion With Water/Steam Injection
,”
ASME
Paper No. GT2023-103466.10.1115/GT2023-103466
18.
Gruber
,
A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Aditya
,
K.
,
Chen
,
J. H.
, and
Williams
,
F. A.
,
2021
, “
Direct Numerical Simulation of Autoignition-Enhanced Flame Stabilization in a Hydrogen-Fueled Reheat Gas Turbine Combustor
,”
J. Eng. Gas Turbines Power
,
69
(
5
), p.
111385
.
19.
Pennell
,
D.
,
Tay-Wo-Chong
,
L.
,
Smith
,
R.
,
Sanchez
,
P. S.
, and
Ciani
,
A.
,
2023
, “
GT36 First Stage Development Enabling Load and Fuel (H2) Flexibility With Low Emissions
,”
ASME
Paper No. GT2023-103568.10.1115/GT2023-103568
20.
Wang
,
G.
,
Boileau
,
M.
, and
Veynante
,
D.
,
2011
, “
Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
11
), pp.
2199
2213
.10.1016/j.combustflame.2011.04.008
21.
Schulz
,
O.
,
Jaravel
,
T.
,
Poinsot
,
T.
,
Cuenot
,
B.
, and
Noiray
,
N.
,
2017
, “
A Criterion to Distinguish Autoignition and Propagation Applied to a Lifted Methane–Air Jet Flame
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1637
1644
.10.1016/j.proci.2016.08.022
22.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part II: Dynamic Formulation
,”
Combust. Flame
,
131
(
1–2
), pp.
181
197
.10.1016/S0010-2180(02)00401-7
23.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.10.1002/kin.20026
24.
Olm
,
C.
,
Zsély
,
I. G.
,
Pálvölgyi
,
R.
,
Varga
,
T.
,
Nagy
,
T.
,
Curran
,
H. J.
, and
Turányi
,
T.
,
2014
, “
Comparison of the Performance of Several Recent Hydrogen Combustion Mechanisms
,”
Combust. Flame
,
161
(
9
), pp.
2219
2234
.10.1016/j.combustflame.2014.03.006
25.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Lab., Los Alamos, NM.
26.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
Taylor & Francis CRC Press
,
Boca Raton, FL
.
27.
Jones
,
W. P.
,
Marquis
,
A. J.
, and
Dongwon
,
N.
,
2017
, “
An Investigation of a Turbulent Spray Flame Using Large Eddy Simulation With a Stochastic Breakup Model
,”
Combust. Flame
,
186
, pp.
277
298
.10.1016/j.combustflame.2017.08.019
28.
Rittler
,
A.
,
Proch
,
F.
, and
Kempf
,
A. M.
,
2015
, “
LES of the Sydney Piloted Spray Flame Series With the PFGM/ATF Approach and Different Sub-Filter Models
,”
Combust. Flame
,
162
(
4
), pp.
1575
1598
.10.1016/j.combustflame.2014.11.025
29.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
30.
Rodhiya
,
A.
,
Aditya
,
K.
,
Gruber
,
A.
, and
Chen
,
J. H.
,
2021
, “
Simulations of Flame Structure in a Reheat Burner: Pressure Scaling
,”
AIAA
Paper No. 2021-3448.10.2514/6.2021-3448
31.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
32.
Werner, H., and Wengle, H.,
1993
, “
Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
Proceedings of the Eighth Symposium on Turbulent Shear Flows
, Berlin, Germany, pp.
155
168
.10.1007/978-3-642-77674-8_12
33.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.10.1016/0017-9310(96)00117-2
34.
Yoshizawa
,
A.
, and
Horiuti
,
K.
,
1985
, “
A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows
,”
J. Phys. Soc. Jpn.
,
54
(
8
), pp.
2834
2839
.10.1143/JPSJ.54.2834
35.
Menon
,
S.
,
Yeung
,
P. K.
, and
Kim
,
W. W.
,
1996
, “
Effect of Subgrid Models on the Computed Interscale Energy Transfer in Isotropic Turbulence
,”
Comput. Fluids
,
25
(
2
), pp.
165
180
.10.1016/0045-7930(95)00036-4
36.
Redlich
,
O.
, and
Kwong
,
J. N. S.
,
1949
, “
On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions
,”
Chem. Rev.
,
44
(
1
), pp.
233
244
.10.1021/cr60137a013
37.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.10.1016/0021-9991(87)90041-6
38.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p.
35
.10.1088/1367-2630/6/1/035
39.
Jomaas
,
G.
,
Law
,
C. K.
, and
Bechtold
,
J. K.
,
2007
, “
On Transition to Cellularity in Expanding Spherical Flames
,”
J. Fluid Mech.
,
583
(
1
), pp.
1
26
.10.1017/S0022112007005885
40.
Bechtold
,
J.
, and
Matalon
,
M.
,
2001
, “
The Dependence of the Markstein Length on Stoichiometry
,”
Combust. Flame
,
127
(
1–2
), pp.
1906
1913
.10.1016/S0010-2180(01)00297-8
41.
Addabbo
,
R.
,
Bechtold
,
J. K.
, and
Matalon
,
M.
,
2002
, “
Wrinkling of Spherically Expanding Flames
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1527
1535
.10.1016/S1540-7489(02)80187-0
42.
Kodavasal
,
J.
,
Pei
,
Y.
,
Harms
,
K.
,
Ciatti
,
S.
,
Wagner
,
A.
,
Senecal
,
P.
,
García
,
M.
, and
Som
,
S.
,
2016
, “
Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation With Multiple Targets on an IBM Blue Gene/Q Supercomputer
,”
SAE
Paper No. 2016-01-0602.10.4271/2016-01-0602
43.
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
, and
Som
,
S.
,
2017
, “
Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis
,”
SAE Int. J. Fuels Lubr.
, 10(1), pp.
56
68
.https://www.sae.org/publications/technical-papers/content/2017-01-0578/
44.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
45.
Storlie
,
C. B.
,
Swiler
,
L. P.
,
Helton
,
J. C.
, and
Sallaberry
,
C. J.
,
2009
, “
Implementation and Evaluation of Nonparametric Regression Procedures for Sensitivity Analysis of Computationally Demanding Models
,”
Reliab. Eng. Syst. Saf.
,
94
(
11
), pp.
1735
1763
.10.1016/j.ress.2009.05.007
46.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.10.1214/ss/1177012413
47.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
48.
Álamo
,
G.
,
Williams
,
F. A.
, and
Sánchez
,
A. L.
,
2004
, “
Hydrogen–Oxygen Induction Times Above Crossover Temperatures
,”
Combust. Sci. Technol.
,
176
(
10
), pp.
1599
1626
.10.1080/00102200490487175
49.
Hawkes
,
E. R.
,
Sankaran
,
R.
,
Pébay
,
P. P.
, and
Chen
,
J. H.
,
2006
, “
Direct Numerical Simulation of Ignition Front Propagation in a Constant Volume With Temperature Inhomogeneities
,”
Combust. Flame
,
145
(
1–2
), pp.
145
159
.10.1016/j.combustflame.2005.09.018
50.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2021
,
An Introduction to Statistical Learning: With Applications in R
,
Springer Nature
,
New York
.
You do not currently have access to this content.