Abstract

Renewable energy sources are the key for long-term decarbonization of energy. However, the intermittent nature of renewables does not always meet the energy demand in the electrical grid. Thus, electrical heated thermal energy storage systems (TES) coupled with sCO2 power cycles are investigated at Helmholtz-Zentrum Dresden-Rossendorf as a possible solution to balance this mismatch. In this study, a printed circuit heat exchanger (PCHE) is considered as candidate for the 1 MW primary heat exchanger, given the mechanical challenge induced by drastic pressure difference between the hot fluid of the TES and the cold fluid of the power cycle. The present work consists of two parts, one elaborates a one-dimensional (1D) model in order to optimize the PCHE regarding the pump power required to compensate the pressure loss. It was found that the hot fluid coming from the TES accounts for 80% of the total pump power after optimization because of its low density and its high mass flow rate. Furthermore, three-dimensional simulations by computational fluid dynamics (CFD) were done and compared to the results from the 1D model to ensure its validity. It was observed that the results from the 1D model and the CFD simulations are consistent, with a slight potential deviation in the calculation of the pressure profile.

References

1.
Agalit
,
H.
,
Zari
,
N.
, and
Maaroufi
,
M.
, ”
2020
, “
Suitability of Industrial Wastes for Application as High Temperature Thermal Energy Storage (TES) Materials in Solar Tower Power Plants – A Comprehensive Review
,”
Solar Energy
,
208
, pp.
1151
1165
.10.1016/j.solener.2020.08.055
2.
Agalit
,
H.
,
Zari
,
N.
,
Maalmi
,
M.
, and
Maaroufi
,
M.
,
2015
, “
Numerical Investigations of High Temperature Packed Bed TES Systems Used in Hybrid Solar Tower Power Plants
,”
Sol. Energy
,
122
, pp.
603
616
.10.1016/j.solener.2015.09.032
3.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.10.13182/NT06-A3734
4.
Dostal
,
V.
,
Driscoll
,
M. J.
,
Hejzlar
,
P.
, and
Todreas
,
N. E.
,
2002
, “
A Supercritical CO2 Gas Turbine Power Cycle for Next-Generation Nuclear Reactors
,”
ASME
Paper No. ICONE10-22192.10.1115/ICONE10-22192
5.
Liu
,
Y.
,
Wang
,
Y.
, and
Huang
,
D.
,
2019
, “
Supercritical CO2 Brayton Cycle: A State-of-the-Art Review
,”
Energy
,
189
, p.
115900
.10.1016/j.energy.2019.115900
6.
Yang
,
J.
,
Yang
,
Z.
, and
Duan
,
Y.
, May
2021
, “
Load Matching and Techno-Economic Analysis of CSP Plant With S–CO2 Brayton Cycle in CSP-PV-Wind Hybrid System
,”
Energy
,
223
, p.
120016
.10.1016/j.energy.2021.120016
7.
Marchionni
,
M.
,
Bianchi
,
G.
,
Tsamos
,
K. M.
, and
Tassou
,
S. A.
,
2017
, “
Techno-Economic Comparison of Different Cycle Architectures for High Temperature Waste Heat to Power Conversion Systems Using CO2 in Supercritical Phase
,”
Energy Procedia
,
123
, pp.
305
312
.10.1016/j.egypro.2017.07.253
8.
Marchionni
,
M.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2020
, “
Review of Supercritical Carbon Dioxide (sCO2) Technologies for High-Grade Waste Heat to Power Conversion
,”
SN Appl. Sci.
, 2(4), p.
611
.10.1007/s42452-020-2116-6
9.
Kim
,
H.
,
Kim
,
H.
,
Lee
,
S.
, and
Kim
,
J.
,
2018
, “
A Study on Heat Transfer Characteristics of Quinary Molten Salt Mixture
,”
Int. J. Heat Mass Transfer
,
127
, pp.
465
472
.10.1016/j.ijheatmasstransfer.2018.08.029
10.
Ma
,
Y.
,
Xie
,
G.
, and
Hooman
,
K.
, ”
2022
, “
Review of Printed Circuit Heat Exchangers and Its Applications in Solar Thermal Energy
,”
Renewable Sustainable Energy Rev.
,
155
, p.
111933
.10.1016/j.rser.2021.111933
11.
Shi
,
H. Y.
,
Li
,
M. J.
,
Wang
,
W. Q.
,
Qiu
,
Y.
, and
Tao
,
W. Q.
,
2020
, “
Heat Transfer and Friction of Molten Salt and Supercritical CO2 Flowing in an Airfoil Channel of a Printed Circuit Heat Exchanger
,”
Int J. Heat Mass Transfer
,
150
, p.
119006
.10.1016/j.ijheatmasstransfer.2019.119006
12.
Zhu
,
Q.
,
Tan
,
X.
,
Barari
,
B.
,
Caccia
,
M.
,
Strayer
,
A. R.
,
Pishahang
,
M.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2021
, “
Design of a 2 MW ZrC/W-Based Molten-Salt-to-sCO2 PCHE for Concentrated Solar Power
,”
Appl Energy
,
300
, p.
117313
.10.1016/j.apenergy.2021.117313
13.
Marchionni
,
M.
,
Chai
,
L.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2019
, “
Numerical Modelling and Performance Maps of a Printed Circuit Heat Exchanger for Use as Recuperator in Supercritical CO2 Power Cycles
,”
Energy Procedia
,
161
, pp.
472
479
.10.1016/j.egypro.2019.02.068
14.
Lao
,
J.
,
Fu
,
Q.
,
Wang
,
W.
,
Ding
,
J.
, and
Lu
,
J.
,
2021
, “
Heat Transfer Characteristics of Printed Circuit Heat Exchanger With Supercritical Carbon Dioxide and Molten Salt
,”
J. Therm. Sci.
,
30
(
3
), pp.
880
891
.10.1007/s11630-020-1374-3
15.
Jiang
,
Y.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Bhattacharyya
,
D.
,
2018
, “
Design and Dynamic Modeling of Printed Circuit Heat Exchangers for Supercritical Carbon Dioxide Brayton Power Cycles
,”
Appl. Energy
,
231
, pp.
1019
1032
.10.1016/j.apenergy.2018.09.193
16.
Mylavarapu
,
S. K.
,
Sun
,
X.
,
Glosup
,
R. E.
,
Christensen
,
R. N.
, and
Patterson
,
M. W.
,
2014
, “
Thermal Hydraulic Performance Testing of Printed Circuit Heat Exchangers in a High-Temperature Helium Test Facility
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
605
614
.10.1016/j.applthermaleng.2014.01.025
17.
Yoon
,
S.-J.
,
O'Brien
,
J.
,
Chen
,
M.
,
Sabharwall
,
P.
, and
Sun
,
X.
,
2017
, “
Development and Validation of Nusselt Number and Friction Factor Correlations for Laminar Flow in Semi-Circular Zigzag Channel of Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
123
, pp.
1327
1344
.10.1016/j.applthermaleng.2017.05.135
18.
Kim
,
W.
,
Baik
,
Y. J.
,
Jeon
,
S.
,
Jeon
,
D.
, and
Byon
,
C.
,
2017
, “
A Mathematical Correlation for Predicting the Thermal Performance of Cross, Parallel, and Counterflow PCHEs
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1294
1302
.10.1016/j.ijheatmasstransfer.2016.10.110
19.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
20.
Xu
,
H.
,
Duan
,
C.
,
Ding
,
H.
,
Li
,
W.
,
Zhang
,
Y.
,
Hong
,
G.
, and
Gong
,
H.
,
2021
, “
The Optimization for the Straight-Channel PCHE Size for Supercritical CO2 Brayton Cycle
,”
Nucl. Eng. Technol.
,
53
(
6
), pp.
1786
1795
.10.1016/j.net.2020.12.002
21.
Kwon
,
J. G.
,
Kim
,
T. H.
,
Park
,
H. S.
,
Cha
,
J. E.
, and
Kim
,
M. H.
,
2016
, “
Optimization of Airfoil-Type PCHE for the Recuperator of Small Scale Brayton Cycle by Cost-Based Objective Function
,”
Nucl. Eng. Des.
,
298
, pp.
192
200
.10.1016/j.nucengdes.2015.12.012
22.
Ping Huang
,
Y.
,
Feng Wang
,
J.
, and
Leung
,
L. K. H.
,
S. hui Liu
2018
, “
Numerical Investigation of Buoyancy Effect on Heat Transfer to Carbon Dioxide Flow in a Tube at Supercritical Pressures
,”
Int J Heat Mass Transfer
,
117
, pp.
595
606
.10.1016/j.ijheatmasstransfer.2017.10.037
23.
Kruizenga
,
A.
,
Li
,
H.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2012
, “
Supercritical Carbon Dioxide Heat Transfer in Horizontal Semicircular Channels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
8
), p.
081802
.10.1115/1.4006108
24.
Zhang
,
Y.
,
Peng
,
M.
,
Xia
,
G.
, and
Cong
,
T.
,
2019
, “
Numerical Investigation on Local Heat Transfer Characteristics of S-CO2 in Horizontal Semicircular Microtube
,”
Appl. Therm. Eng.
,
154
, pp.
380
392
.10.1016/j.applthermaleng.2019.03.082
You do not currently have access to this content.