Abstract

Calcium-magnesium alumino-silicate (CMAS) infiltration and attack are difficult to simulate at real-world rates. To better understand the sensitivity of the process to engine operating parameters and CMAS chemical composition, a systems-based reduced order infiltration model that incorporates combustion gas properties, TBC microstructural properties, thermal barrier coating (TBC) heat transfer properties, and CMAS physical properties was developed. The aim was to predict the time to delamination for aircraft engines operating in non-benign environments. The penetration depths reached by a synthetic four-element CMAS mixture within a clean TBC were calculated by finite difference method. Engine operating conditions and TBC top coat types were varied to study the effects on the penetration depths and times. A larger difference between operating temperature and cold shock temperature was found to increase the risk of Mode I delamination. An increase in engine operating temperature had little effect on the critical penetration depth, but significantly influenced the actual penetration depth and time. An increase in electron beam - physical vapor deposition (EB-PVD) TBC taper angle resulted in a decrease in the critical penetration depths, suggesting a greater risk of Mode I delamination. The time taken to reach the actual penetration depth increased with operating time, until the TBC was consumed, at which point penetration time decreased with operating temperature due to lower melt viscosity.

References

1.
Saarimäki
,
J.
,
2018
,
Cracks in Superalloys
, Vol.
1897
,
Linköping University Electronic Press, Linkoping, Sweden
.
2.
Wenmann
,
C.
,
2021
, “
Erosion Behaviour of Thermal Barrier Coatings
,”
Ph.D. dissertation
,
Linköping University
, Linköping,
Sweden
.https://www.diva-portal.org/smash/get/diva2:1568054/FULLTEXT01.pdf
3.
Guo
,
S.
, and
Kagawa
,
Y.
,
2007
, “
Isothermal and Cycle Properties of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings at 1150 and 1300 C
,”
Ceram. Int.
,
33
(
3
), pp.
373
378
.10.1016/j.ceramint.2005.10.005
4.
Feuerstein
,
A.
,
Knapp
,
J.
,
Taylor
,
T.
,
Ashary
,
A.
,
Bolcavage
,
A.
, and
Hitchman
,
N.
,
2008
, “
Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review
,”
J. Therm. Spray Technol.
,
17
(
2
), pp.
199
213
.10.1007/s11666-007-9148-y
5.
Krämer
,
S.
,
Faulhaber
,
S.
,
Chambers
,
M.
,
Clarke
,
D. R.
,
Levi
,
C. G.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2008
, “
Mechanisms of Cracking and Delamination Within Thick Thermal Barrier Systems in Aero-Engines Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Penetration
,”
Mater. Sci. Eng. A
,
490
(
1–2
), pp.
26
35
.10.1016/j.msea.2008.01.006
6.
Wellman
,
R.
,
Whitman
,
G.
, and
Nicholls
,
J. R.
,
2010
, “
CMAS Corrosion of EB PVD TBCs: Identifying the Minimum Level to Initiate Damage
,”
Int. J. Refractory Met. Hard Mater.
,
28
(
1
), pp.
124
132
.10.1016/j.ijrmhm.2009.07.005
7.
Vidal-Setif
,
M. H.
,
Chellah
,
N.
,
Rio
,
C.
,
Sanchez
,
C.
, and
Lavigne
,
O.
,
2012
, “
Calcium–Magnesium–Alumino-Silicate (CMAS) Degradation of EB-PVD Thermal Barrier Coatings: Characterization of CMAS Damage on Ex-Service High Pressure Blade TBCs
,”
Surf. Coat. Technol.
,
208
, pp.
39
45
.10.1016/j.surfcoat.2012.07.074
8.
Peng
,
H.
,
Wang
,
L.
,
Guo
,
L.
,
Miao
,
W.
,
Guo
,
H.
, and
Gong
,
S.
,
2012
, “
Degradation of EB-PVD Thermal Barrier Coatings Caused by CMAS Deposits
,”
Prog. Nat. Sci. Mater. Int.
,
22
(
5
), pp.
461
467
.10.1016/j.pnsc.2012.06.007
9.
Krause
,
A. R.
,
Garces
,
H. F.
,
Dwivedi
,
G.
,
Ortiz
,
A. L.
,
Sampath
,
S.
, and
Padture
,
N.
,
2016
, “
Calcia-Magnesia-Alumino-Silicate (CMAS)-Induced Degradation and Failure of Air Plasma Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings
,”
Acta Mater.
,
105
, pp.
355
366
.10.1016/j.actamat.2015.12.044
10.
Bernard
,
B.
,
Quet
,
A.
,
Bianchi
,
L.
,
Joulia
,
A.
,
Malié
,
A.
,
Schick
,
V.
, and
Rémy
,
B.
,
2017
, “
Thermal Insulation Properties of YSZ Coatings: Suspension Plasma Spraying (SPS) Versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS)
,”
Surf. Coat. Technol.
,
318
, pp.
122
128
.10.1016/j.surfcoat.2016.06.010
11.
Smialek
,
J. L.
,
1991
, “
The Chemistry of Saudi Arabian Sand: A Deposition Problem on Helicopter Turbine Airfoils
,”
Gordon Conference on Corrosion
, New London, NH, July 14, Paper No. NAS 1.15, p.
105234
.https://www.researchgate.net/publication/23608470_The_chemistry_of_Saudi_Arabian_sand_-_A_deposition_problem_on_helicopter_turbine_airfoils
12.
Nicholls
,
J. R.
,
Lawson
,
K. J.
,
Rickerby
,
D. S.
, and
Morrel
,
P.
,
1998
, “
Advanced Processing of TBC's for Reduced Thermal Conductivity
,”
Rolls-Royce plc
,
Aslborg, Denmark
.
13.
Rätzer-Scheibe
,
H.-J.
,
Schulz
,
U.
, and
Krell
,
T.
,
2006
, “
The Effect of Coating Thickness on the Thermal Conductivity of EB-PVD PYSZ Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
200
(
18–19
), pp.
5636
5644
.10.1016/j.surfcoat.2005.07.109
14.
Qiu
,
S.-Y.
,
Wu
,
C. W.
,
Huang
,
C. G.
,
Ma
,
Y.
, and
Guo
,
H. B.
,
2021
, “
Microstructure Dependence of Effective Thermal Conductivity of EB-PVD TBCs
,”
Materials
,
14
(
8
), p.
1838
.10.3390/ma14081838
15.
Pisani
,
L.
,
2011
, “
Simple Expression for the Tortuosity of Porous Media
,”
Transp. Porous Media
,
88
(
2
), pp.
193
203
.10.1007/s11242-011-9734-9
16.
Kumar
,
R.
,
Rommel
,
S.
,
Jiang
,
C.
, and
Jordan
,
E. H.
,
2022
, “
Effect of CMAS Viscosity on the Infiltration Depth in Thermal Barrier Coatings of Different Microstructures
,”
Surf. Coat. Technol.
,
432
, p.
128039
.10.1016/j.surfcoat.2021.128039
17.
Bojdo
,
N.
, and
Filippone
,
A.
,
2019
, “
A Simple Model to Assess the Role of Dust Composition and Size on Deposition in Rotorcraft Engines
,”
Aerospace
,
6
(
4
), p.
44
.10.3390/aerospace6040044
18.
Zhao
,
H.
,
Levi
,
C. G.
, and
Wadley
,
H. N. G.
,
2014
, “
Molten Silicate Interactions With Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
251
, pp.
74
86
.10.1016/j.surfcoat.2014.04.007
19.
Mechnich
,
P.
, and
Braue
,
W.
,
2015
, “
Solid‐State CMAS Corrosion of an EB‐PVD YSZ Coated Turbine Blade: Zr4+ Partitioning and Phase Evolution
,”
J. Am. Ceram. Soc.
,
98
(
1
), pp.
296
302
.10.1111/jace.13241
20.
Mercer
,
C.
,
Faulhaber
,
S.
,
Evans
,
A. G.
, and
Darolia
,
R.
,
2005
, “
A Delamination Mechanism for Thermal Barrier Coatings Subject to Calcium–Magnesium– Alumino-Silicate (CMAS) Infiltration
,”
Acta Mater.
,
53
(
4
), pp.
1029
1039
.10.1016/j.actamat.2004.11.028
21.
Cai
,
Z.
,
Jiang
,
J.
,
Wang
,
W.
,
Liu
,
Y.
, and
Cao
,
Z.
,
2019
, “
CMAS Penetration-Induced Cracking Behavior in the Ceramic Top Coat of APS TBCs
,”
Ceram. Int.
,
45
(
11
), pp.
14366
14375
.10.1016/j.ceramint.2019.04.152
22.
Zhao
,
L. G.
,
Lu
,
T. J.
, and
Fleck
,
N. A.
,
2000
, “
Crack Channelling and Spalling in a Plate Due to Thermal Shock Loading
,”
J. Mech. Phys. Solids
,
48
(
5
), pp.
867
897
.10.1016/S0022-5096(99)00064-2
23.
Dong
,
H.
,
Wang
,
H.
,
Cai
,
Z.
,
Wang
,
W.
, and
Liu
,
Y.
,
2024
, “
Peridynamics–FEM Coupling for Interfacial Delamination Effected by Vertical Crack Density in Thermal Barrier Coatings
,”
Int. J. Appl.
,
16
(
1
), p.
2450005
.10.1142/S1758825124500054
24.
Gauntner
,
D. J.
, and
Sucec
,
J.
,
1978
, “
Method for Calculating Convective Heat-Transfer Coefficients Over Turbine Vane Surfaces
,” NASA Technical Publication, Washington, DC, No.
E-9324
.https://ntrs.nasa.gov/api/citations/19780009395/downloads/19780009395.pdf
25.
Wiesner
,
V. L.
, and
Bansal
,
N. P.
,
2015
, “
Mechanical and Thermal Properties of Calcium–Magnesium Aluminosilicate (CMAS) Glass
,”
J. Eur. Ceram. Soc.
,
35
(
10
), pp.
2907
2914
.10.1016/j.jeurceramsoc.2015.03.032
26.
Krämer
,
S.
,
Yang
,
J.
,
Levi
,
C. G.
, and
Johnson
,
C. A.
,
2006
, “
Thermochemical Interaction of Thermal Barrier Coatings With Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits
,”
J. Am. Ceram. Soc.
,
89
(
10
), pp.
3167
3175
.10.1111/j.1551-2916.2006.01209.x
27.
Cavainolo
,
B. A.
,
Kinzel
,
M. P.
,
Naraparaju
,
R.
, and
Kabir
,
M. R.
,
2023
, “
Simulating CMAS Infiltration of an EB-PVD Thermal Barrier Coating Using the Volume-of-Fluid Method
,”
AIAA
Paper No. 2023–4427.10.2514/6.2023-4427
28.
Mauro
,
J. C.
,
Yue
,
Y.
,
Ellison
,
A. J.
,
Gupta
,
P. K.
, and
Allan
,
D. C.
,
2009
, “
Viscosity of Glass-Forming Liquids
,”
Proc. Natl. Acad. Sci.
,
106
(
47
), pp.
19780
19784
.10.1073/pnas.0911705106
29.
Dong
,
J.
,
Zhang
,
D.
, and
Gan
,
L.
,
2019
, “
An Empirical Formula for Accurate Calculation of Liquidus Temperature of Blast Furnace Slags in SiO2–Al2O3–CaO–MgO System
,”
Ironmaking Steelmaking
,
46
(
1
), pp.
71
74
.10.1080/03019233.2017.1340545
30.
Kelton
,
K. F.
,
2017
, “
Kinetic and Structural Fragility—a Correlation Between Structures and Dynamics in Metallic Liquids and Glasses
,”
J. Phys. Condens. Matter
,
29
(
2
), p.
023002
.10.1088/0953-8984/29/2/023002
31.
Avramov
,
I.
,
2007
, “
Viscosity Activation Energy' Physics and Chemistry of Glasses
,”
Eur. J. Glass Sci. Technol. Part B
,
48
(
1
), pp.
61
63
.https://www.ingentaconnect.com/contentone/sgt/ejgst/2007/00000048/00000001/art00008
32.
Wiesner
,
V. L.
, and
Bansal
,
N. P.
,
2014
, “
Crystallization Kinetics of Calcium–Magnesium Aluminosilicate (CMAS) Glass
,”
Surf. Coat. Technol.
,
259
, pp.
608
615
.10.1016/j.surfcoat.2014.10.023
33.
Levi
,
C. G.
,
Hutchinson
,
J. W.
,
Vidal-Sétif
,
M. H.
, and
Johnson
,
C. A.
,
2012
, “
Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits
,”
MRS Bull.
,
37
(
10
), pp.
932
941
.10.1557/mrs.2012.230
34.
Naraparaju
,
R.
,
Gomez Chavez
,
J. J.
,
Niemeyer
,
P.
,
Hess
,
K.-U.
,
Song
,
W.
,
Dingwell
,
D. B.
,
Lokachari
,
S.
,
Ramana
,
C. V.
, and
Schulz
,
U.
,
2019
, “
Estimation of CMAS Infiltration Depth in EB-PVD TBCs: A New Constraint Model Supported With Experimental Approach
,”
J. Eur. Ceram. Soc.
,
39
(
9
), pp.
2936
2945
.10.1016/j.jeurceramsoc.2019.02.040
35.
Naraparaju
,
R.
,
Hüttermann
,
M.
,
Schulz
,
U.
, and
Mechnich
,
P.
,
2017
, “
Tailoring the EB-PVD Columnar Microstructure to Mitigate the Infiltration of CMAS in 7YSZ Thermal Barrier Coatings
,”
J. Eur. Ceram. Soc.
,
37
(
1
), pp.
261
270
.10.1016/j.jeurceramsoc.2016.07.027
36.
Kabir
,
M. R.
,
Sirigiri
,
A. K.
,
Naraparaju
,
R.
, and
Schulz
,
U.
,
2019
, “
Flow Kinetics of Molten Silicates Through Thermal Barrier Coating: A Numerical Study
,”
Coatings
,
9
(
5
), p.
332
.10.3390/coatings9050332
37.
Johari
,
A. D.
, and
Rahman
,
M. M.
,
2015
, “
A Review of Advance Thermal Barrier Coating Architecture
,”
The 3rd National Graduate Conference (Nat Grad 2015)
,
Universiti Tenaga Nasional
,
Putrajaya, Malaysia, Apr. 8–9
.https://www.researchgate.net/publication/304719080_A_review_of_advance_thermal_barrier_coating_architecture
38.
Krause
,
A. R.
,
Senturk
,
B. S.
,
Garces
,
H. F.
,
Dwivedi
,
G.
,
Ortiz
,
A. L.
,
Sampath
,
S.
, and
Padture
,
N. P.
,
2014
, “
2ZrO2 Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part I Optical Basicity Considerations and Processing
,”
J. Am. Ceram. Soc.
,
97
(
12
), pp.
3943
3949
.10.1111/jace.13210
39.
Gleeson
,
B.
,
2006
, “
Thermal Barrier Coatings for Aeroengine Applications
,”
J. Propul. Power
,
22
(
2
), pp.
375
383
.10.2514/1.20734
40.
Lima
,
R. S.
,
2020
, “
Perspectives on Thermal Gradients in Porous ZrO2-7–8 wt.% Y2O3 (YSZ) Thermal Barrier Coatings (TBCs) Manufactured by Air Plasma Spray (APS)
,”
Coatings
,
10
(
9
), p.
812
.10.3390/coatings10090812
41.
Kumar
,
V.
, and
Kandasubramanian
,
B.
,
2016
, “
Processing and Design Methodologies for Advanced and Novel Thermal Barrier Coatings for Engineering Applications
,”
Particuology
,
27
, pp.
1
28
.10.1016/j.partic.2016.01.007
42.
Chen
,
X.
,
2006
, “
Calcium–Magnesium–Alumina–Silicate (CMAS) Delamination Mechanisms in EB-PVD Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
200
(
11
), pp.
3418
3427
.10.1016/j.surfcoat.2004.12.029
43.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.10.1063/1.1747673
44.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Sherwood
,
T. K.
,
1977
,
The Properties of Gases and Liquids
, 3rd ed.,
McGraw-Hill
,
New York
.
45.
Maitland
,
G.
,
Rigby
,
M.
,
Smith
,
E.
,
Wakeham
,
W.
, and
Henderson
,
D.
,
1983
, “
Intermolecular Forces: Their Origin and Determination
,”
Phys. Today
, 36(4), pp.
57
58
.10.1063/1.2915587
46.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
,
1964
,
The Molecular Theory of Gases and Liquids
,
Wiley
, Hoboken, NJ.
47.
Guggenheim
,
E. A.
,
1960
,
Elements of the Kinetic Theory of Gases
, Vol.
1
,
Pergamon Press
,
Oxford, UK
.
48.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1990
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
,
Cambridge University Press
,
Cambridge, UK
.
49.
Nieto
,
A.
,
Agrawal
,
R.
,
Bravo
,
L.
,
Hofmeister-Mock
,
C.
,
Pepi
,
M.
, and
Ghoshal
,
A.
,
2021
, “
Calcia–Magnesia–Alumina–Silicate (CMAS) Attack Mechanisms and Roadmap Towards Sandphobic Thermal and Environmental Barrier Coatings
,”
Int. Mater. Rev.
,
66
(
7
), pp.
451
492
.10.1080/09506608.2020.1824414
50.
Webster
,
R. I.
, and
Opila
,
E. J.
,
2022
, “
Viscosity of CaO-MgO-Al2O3-SiO2 (CMAS) Melts: Experimental Measurements and Comparison to Model Calculations
,”
J. Non-Cryst. Solids
,
584
, p.
121508
.10.1016/j.jnoncrysol.2022.121508
51.
Wellman
,
R. G.
, and
Nicholls
,
J. R.
,
2007
, “
A Review of the Erosion of Thermal Barrier Coatings
,”
J. Phys. D Appl. Phys.
,
40
(
16
), pp.
R293
R305
.10.1088/0022-3727/40/16/R01
52.
Altun
,
Ö.
, and
Böke
,
Y.
,
2009
, “
Effect of the Microstructure of EB-PVD Thermal Barrier Coatings on the Thermal Conductivity and the Methods to Reduce the Thermal Conductivity
,”
Arch. Mater. Sci.
,
48
, p.
48
.https://www.researchgate.net/publication/44567623_Effect_of_the_microstructure_of_EB-PVD_thermal_barrier_coatings_on_the_thermal_conductivity_and_the_methods_to_reduce_the_thermal_conductivity
53.
Kakuda
,
T. R.
,
Limarga
,
M. A.
,
Bennett
,
T. D.
, and
Clarke
,
D. R.
,
2009
, “
Evolution of Thermal Properties of EB-PVD 7YSZ Thermal Barrier Coatings
,”
Acta Mater.
,
57
(
8
), pp.
2583
2591
.10.1016/j.actamat.2009.02.019
You do not currently have access to this content.