Abstract

This paper highlights the intricate rotor–stator interaction between a tandem bladed rotor and a single-bladed stator in the light of unsteady numerical simulations. A low-speed tandem bladed compressor stage has been conceptualized and experimentally validated against targeted performance goal. With the evident pressure rise capability of the tandem bladed compressor stage, it becomes obligatory to investigate the rotor–stator interaction owing to its dominant effect on overall stage performance. The multipassage rotor–stator unsteady simulations have been performed using blade transformation methods in ANSYS CFX. Due to the presence of two highly loaded rotor blades, the tandem rotor exhibits peculiar rotor–stator interaction in terms of multiple wake impingement on the stator. Incorporating tandem blading on the rotor instead of the stator (which is more common) constricts the design envelope in terms of choice of blade axial overlap and percentage pitch. The variation of aerodynamic loading from hub to tip for both the rotor blades results in spanwise varying wake strength. The initially distinct wake structures merge resulting into a thicker wake. Additionally, the rotor blades are highly loaded in the tip region, which results in the complex interaction between end-wall boundary layer and tip leakage flow. Cumulatively, these conditions constitute a challenging aerodynamic field for the downstream stator. The study focuses on the qualitative interaction between the rotor wakes and blockage with the downstream stator and put forwards some aspects of the tandem rotor-single stator stage design especially for core compressors of aero engine application.

References

1.
Honeywell Aerospace Technologies
, 2024, “
HTF7000, Honeywell
,” Honeywell, Los Angeles, CA, accessed Nov. 20, 2024, https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-and-systems/engines/htf7000-turbofan-engine
2.
Honda
, 2024, “
GE Honda HF120
,” Honda, Tokyo, Japan, accessed Nov. 20, 2024, https://global.honda/products/aeroengine/HF120.html?from=navi_drawer
3.
Smith
,
A. M. O.
,
1975
, “
High-Lift Aerodynamics
,”
J. Aircr.
,
12
(
6
), pp.
501
530
.10.2514/3.59830
4.
Sheets
,
H. E.
,
1956
, “
The Slotted Blade Axial-Flow Blower
,”
ASME Trans. ASME
, 78(8), pp.
1683
1690
.10.1115/1.4014148
5.
Spraglin
,
W. E.
,
1951
,
Flow Through Cascades in Tandem
,
National Advisory Committee for Aeronautics
, Hampton, VA, Report No. NACA-TN-2393.
6.
Sanger
,
N. L.
,
1971
, “
Analytical Study of the Effects of Geometric Changes on the Flow Characteristics of Tandem-Bladed Compressor Stators
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA TN D-6264
.https://ntrs.nasa.gov/citations/19710012033
7.
Sanger
,
N. L.
,
1973
, “
Analytical Study on a Two Dimensional Plane of the Off-Design Flow Properties of Tandem Bladed Compressor Stators
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA TM X-2734
.https://ntrs.nasa.gov/citations/19730008259
8.
Bammert
,
K.
, and
Beelte
,
H.
,
1980
, “
Investigations of an Axial Flow Compressor With Tandem Cascades
,”
ASME J. Eng. Power
,
102
(
4
), pp.
971
977
.10.1115/1.3230369
9.
Bammert
,
K.
, and
Staude
,
R.
,
1981
, “
New Features in the Design of Axial-Flow Compressors With Tandem Blades
,”
ASME
Paper No. 81-GT-113.10.1115/81-GT-113
10.
McGlumphy
,
J.
,
Ng
,
W.-F.
,
Wellborn
,
S. R.
, and
Kempf
,
S.
,
2010
, “
3D Numerical Investigation of Tandem Airfoils for a Core Compressor Rotor
,”
ASME J. Turbomach.
,
132
(
3
), p.
031009
.10.1115/1.3149283
11.
McGlumphy
,
J.
,
Ng
,
W.-F.
,
Wellborn
,
S. R.
, and
Kempf
,
S.
,
2009
, “
Numerical Investigation of Tandem Airfoils for Subsonic Axial-Flow Compressor Blades
,”
ASME J. Turbomach.
,
131
(
2
), p.
021018
.10.1115/1.2952366
12.
Falla
,
G. A. C.
,
2004
, “
Numerical Investigation of the Flow in Tandem Compressor Cascades
,” Vienna University of Technology, Vienna, Austria, accessed Nov. 20, 2024, http://publik.tuwien.ac.at/files/pub-mb_2743.pdf
13.
Eckel
,
J.
,
Heinrich
,
A.
,
Janke
,
C.
,
Ortmanns
,
J.
, and
Peitsch
,
D.
,
2016
, “
3D Numerical and Experimental Investigation of High Turning Compressor Tandem Cascade
,”
German Aerospace Congress, Deutscher Luft-Und Raumfahrtkongress
, Braunschweig, Germany, Sept. 14.https://www.researchgate.net/publication/308992333_3D_Numerical_and_Experimental_Investigation_of_High_Turning_Compressor_Tandem_Cascade
14.
Schluer
,
C.
,
Böhle
,
M.
, and
Cagna
,
M.
,
2009
, “
Numerical Investigation of the Secondary Flows and Losses in a High-Turning Tandem Compressor Cascade
,”
8th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics, ETC 2009 - Conference Proceedings
, Graz, Austria, Mar. 23–27, Vol. 8.https://www.researchgate.net/publication/281281861_Numerical_Investigation_of_the_Secondary_Flows_and_Losses_in_a_High-Turning_Tandem_Compressor_Cascade
15.
Böhle
,
M.
, and
Frey
,
T.
,
2014
, “
Numerical and Experimental Investigations of the Three-Dimensional-Flow Structure of Tandem Cascades in the Sidewall Region
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071102
.10.1115/1.4026880
16.
Lei
,
V.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
.10.1115/1.2775492
17.
Hergt
,
A.
, and
Siller
,
U.
,
2019
, “
About Subsonic Compressor Tandem Aerodynamics - A Fundamental Study
,”
Open Archives of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
ISROMAC
, Honolulu, HI, Apr. 10–15, pp.
1
9
.https://core.ac.uk/download/pdf/77229711.pdf
18.
Eshraghi
,
H.
,
Boroomand
,
M.
, and
Tousi
,
A. M.
,
2016
, “
A Developed Methodology in Design of Highly Loaded Tandem Axial Flow Compressor Stage
,”
J. Appl. Fluid Mech.
,
9
(
1
), pp.
83
94
.10.18869/acadpub.jafm.68.224.23948
19.
Madasseri Payyappalli
,
M.
, and
Pradeep
,
A. M.
,
2018
, “
Effect of Tandem Blading in Contra-Rotating Axial Flow Fans
,”
ASME
Paper No. GT2018-75477.10.1115/GT2018-75477
20.
Singh
,
A.
, and
Mistry
,
C. S.
,
2019
, “
Study on Effect of Axial Overlap on Tip Leakage Flow Structure in Tandem Bladed Low Speed Axial Flow Compressor
,”
ASME
Paper No. GT2019-91366.10.1115/GT2019-91366
21.
Singh
,
A.
, and
Mistry
,
C. S.
,
2020
, “
Aerodynamic Design Aspects for Stator of Highly Loaded Tandem Bladed Axial Compressor
,”
ASME
Paper No. GT2020-15968.10.1115/GT2020-15968
22.
Singh
,
A.
, and
Mistry
,
C. S.
,
2024
, “
Investigations On Design Space for Highly Loaded Tandem Bladed Axial Flow Rotor- Novel Stator for Low-Speed Research Facility
,”
J. Appl. Fluid Mech.
, 17(10), pp.
2245
2265
.10.47176/jafm.17.10.2521
23.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.10.1115/1.3645942
24.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
,
1970
, “
Intra-Stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
ASME J. Eng. Gas Turbine Power
,
92
(
4
), pp.
359
368
.10.1115/1.3445365
25.
Okiishi
,
T. H.
,
Hathaway
,
M. D.
, and
Hansen
,
J. L.
,
1985
, “
A Note on Blade Wake Interaction Influence on Compressor Stator Row Aerodynamic Performance
,”
ASME J. Eng. Gas Turbine Power
,
107
(
2
), pp.
549
551
.10.1115/1.3239768
26.
Fritsch
,
G.
, and
Giles
,
M.
,
1992
, “
Second-Order Effects of Unsteadiness on the Performance of Turbomachines
,”
ASME
Paper No. 92-GT-389.10.1115/92-GT-389
27.
Adamczyk
,
J. J.
,
1996
, “
Wake Mixing in Axial Flow Compressors
,”
ASME
Paper No. 96-GT-029.10.1115/96-GT-029
28.
Deregel
,
P.
, and
Tan
,
C. S.
,
1996
, “
Impact of Rotor Wakes on Steady-State Axial Compressor Performance
,”
ASME
Paper No. 96-GT-253.10.1115/96-GT-253
29.
Rose
,
M. G.
, and
Harvey
,
N. W.
,
2000
, “
Turbomachinery Wakes: Differential Work and Mixing Losses
,”
ASME J. Turbomach.
, 122(1), pp.
68
77
.10.1115/1.555429
30.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
2002
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
2
), pp.
275
284
.10.1115/1.1445793
31.
Tiwari
,
A.
,
Lad
,
A.
,
Patel
,
S.
, and
Mistry
,
C. S.
,
2016
, “
Development of Bell Mouth for Low Speed Axial Flow Compressor Testing Facility
,”
Proceedings of the Asian Congress on Gas Turbines
, Mumbai, India, Nov. 14–16, pp.
14
16
.https://www.researchgate.net/publication/310773919_DEVELOPMENT_OF_BELL_MOUTH_FOR_LOW_SPEED_AXIAL_FLOW_COMPRESSOR_TESTING_FACILITY
32.
Singh
,
A.
,
Kumar
,
A.
,
Tayal
,
G.
, and
Mistry
,
C.
,
2021
, “
Development of Time-Efficient Multi-Hole Pressure Probe Calibration Facility BT
,”
Proceedings of the National Aerospace Propulsion Conference
,
C. S.
Mistry
,
S. K.
Kumar
,
B. N.
Raghunandan
, and
G.
Sivaramakrishna
, eds.,
Springer
,
Singapore
, pp.
313
336
.
33.
Sitaram
,
N.
, and
Govardhan
,
M.
,
2002
, “
Large Angle Calibration of Five Hole Probes
,”
J.-Aeronaut. Soc. India
,
54
(
3
), pp.
265
272
.https://www.researchgate.net/publication/301694654_Large_Angle_Calibration_of_Five_Hole_Probe
34.
Belamri
,
T.
,
Galpin
,
P.
,
Braune
,
A.
, and
Cornelius
,
C.
,
2005
, “
CFD Analysis of a 15 Stage Axial Compressor: Part I—Methods
,”
ASME
Paper No. GT2005-68261.10.1115/GT2005-68261
35.
Belamri
,
T.
,
Galpin
,
P.
,
Braune
,
A.
, and
Cornelius
,
C.
,
2005
, “
CFD Analysis of a 15 Stage Axial Compressor: Part II—Results
,”
ASME
Paper No. GT2005-68262.10.1115/GT2005-68262
36.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
A. G.
,
2013
, “
A Critical Review of Computational Methods and Their Application in Industrial Fan Design
,”
ISRN Mech. Eng.
,
2013
(
327
), pp.
1
20
.10.1155/2013/625175
37.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
38.
Connell
,
S.
,
Braaten
,
M.
,
Zori
,
L.
,
Steed
,
R.
,
Hutchinson
,
B.
, and
Cox
,
G.
,
2011
, “
A Comparison of Advanced Numerical Techniques to Model Transient Flow in Turbomachinery Blade Rows
,”
ASME
Paper No. GT2011-45820.10.1115/GT2011-45820
39.
Witteck
,
D.
, and
Micallef
,
D.
,
2014
, “
Comparison of Transient Blade Row Methods for the CFD Analysis
,”
ASME
Paper No. GT2014-26043.10.1115/GT2014-26043
40.
Galpin
,
P. F.
,
Broberg
,
R. B.
, and
Hutchinson
,
B. R.
,
1995
, “
Three-Dimensional Navier Stokes Predictions of Steady State Rotor/Stator Interaction With Pitch Change
,”
Proceedings of 3rd Annual Conference of the CFD Society of Canada
,
Banff, AB, Canada
, June 25–27, pp.
305
319
.
41.
Biesinger
,
T.
,
Cornelius
,
C.
,
Rube
,
C.
,
Schmid
,
G.
,
Braune
,
A.
,
Campregher
,
R.
,
Godin
,
P. G.
, and
Zori
,
L.
,
2010
, “
Unsteady CFD Methods in a Commercial Solver
,”
ASME
Paper No. GT2010-22762.10.1115/GT2010-22762
42.
Levy
,
Y.
,
Degani
,
D.
, and
Seginer
,
A.
,
1990
, “
Graphical Visualization of vortical flows by Means of Helicity
,”
AIAA J.
,
28
(
8
), pp.
1347
1352
.10.2514/3.25224
You do not currently have access to this content.