Abstract

Experimental testing at the test rig still plays a key role in the development of new centrifugal compressor designs for industrial applications. Although a wide set of different probes is used as per common practice, the overall impact of the probes' dimensions on the stage performance and rangeability is often assumed to be negligible. In this study, we aimed at quantifying the intrusiveness effects of pneumatic pressure probes on the flow-field inside a vaned diffuser using a model stage of an industrial centrifugal compressor, for which different experimental setups were tested at the University of Florence test rig. Performance and rangeability were initially assessed using a conventional set of pneumatic probes inserted in the flow path. Then, comparative analyses were realized through dedicated tests by either removing all probes at the diffuser inlet or introducing only a single pressure probe in the upstream section and varying its angular position in the measuring section. Experiments revealed an impact of upstream probes much higher than expected, with a decrease in efficiency and a substantial reduction of stall margin. Moving from this experimental evidence, accurate three-dimensional computational fluid dynamics (CFD) simulations of the entire stage were carried out including the actual geometry of the probes for two probes configurations and three operating points (OPs). Simulations highlighted the effect probes' wakes on downstream vanes and the induced blockage effect, which both appear in line with experimental evidence. As a handout, a recommendation on the optimal probe positioning is suggested.

References

1.
Sorokes
,
J. M.
, and
Welch
,
J. P.
,
1991
, “
Centrifugal Compressor Performance Enhancement Through the Use of Single-Stage Development Rig
,”
Proceedings of the 20th Turbomachinery Symposium
, College Station, TX, Mar. 19–20, p.
101112
.https://hdl.handle.net/1969.1/163540
2.
NREL
,
2014
, “
Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs
,” National Renewable Energy Laboratory, Boulder, CO, Report No. NREL/BK-6A10-58564, accessed Oct. 15, 2024, https://www.nrel.gov/docs/fy14osti/58564.pdf
3.
Adam
,
P.
,
Heunemann
,
F.
,
von Dem Bussche
,
C.
,
Engelshove
,
S.
, and
Thiemann
,
T.
,
2021
, “
Hydrogen Infrastructure—The Pillar of Energy Transition
,” Siemens Energy, Munich, Germany.
4.
Rossbach
,
T.
,
Rube
,
C.
,
Wadeking
,
M.
,
Franz
,
H.
, and
Jeschke
,
P.
,
2015
, “
Performance Measurements of a Full-Stage Centrifugal Process Gas Compressor Test Rig
,” Proceedings of the 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics Energy Procedia (
ETC11
), Madrid, Spain, Mar. 23–27, Paper No. ETC2015-084.https://www.euroturbo.eu/publications/proceedings-papers/etc2015-084/
5.
Wyler
,
J. S.
,
1975
, “
Probe Blockage Effects in Free Jets and Closed Tunnels
,”
ASME J. Eng. Power
,
97
(
4
), pp.
509
514
.10.1115/1.3446046
6.
Sieverding
,
C.
,
Arts
,
T.
,
Dénos
,
R.
, and
Brouckaert
,
J. F.
,
2000
, “
Measurement Techniques for Unsteady Flows in Turbomachines
,”
Exp. Fluids
,
28
(
4
), pp.
285
321
.10.1007/s003480050390
7.
Sanders
,
C.
,
Terstegen
,
M.
,
Hölle
,
M.
,
Jeschke
,
P.
,
Schönenborn
,
H.
, and
Fröbel
,
T.
,
2017
, “
Numerical Studies on the Intrusive Influence of a Five-Hole Pressure Probe in a High-Speed Axial Compressor
,”
ASME
Paper No. GT2017-63399.10.1115/GT2017-63399
8.
Gilarranz
,
J. L.
,
Ranz
,
A. J.
,
Kopko
,
J. A.
, and
Sorokes
,
J. M.
,
2005
, “
On the Use of Five-Hole Probes in the Testing of Industrial Centrifugal Compressors
,”
ASME J. Turbomach.
,
127
(
1
), pp.
91
106
.10.1115/1.1812319
9.
Jaatinen-Värri
,
A.
,
Röyttä
,
P.
,
Turunen-Saaresti
,
T.
, and
Grönman
,
A.
,
2013
, “
Experimental Study of Centrifugal Compressor Vaneless Diffuser Width
,”
J. Mech. Sci. Technol.
,
27
(
4
), pp.
1011
1020
.10.1007/s12206-013-0122-y
10.
Coldrick
,
S.
,
Ivey
,
P.
, and
Wells
,
R.
,
2003
, “
Considerations for Using 3-D Pneumatic Probes in High-Speed Axial Compressors
,”
ASME J. Turbomach.
,
125
(
1
), pp.
149
154
.10.1115/1.1515334
11.
Ma
,
H.
,
Li
,
S.
, and
Wei
,
W.
,
2014
, “
Effects of Probe Support on the Flow Field of a Low-Speed Axial Compressor
,”
J. Therm. Sci.
,
23
(
2
), pp.
120
126
.10.1007/s11630-014-0685-7
12.
Honghui
,
X.
,
Ning
,
G.
,
Jie
,
G.
,
Rongfei
,
Y.
, and
Minjie
,
H.
,
2019
, “
Experimental Investigation of the Effect of the Probe Support Tail Structure on the Compressor Cascade Flow Field
,”
Int. J. Turbo Jet-Engines
,
36
(
1
), pp.
9
18
.10.1515/tjj-2016-0071
13.
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Biliotti
,
D.
,
Altamore
,
M.
,
Cangemi
,
E.
,
Giachi
,
M.
,
Rubino
,
D. T.
,
Tapinassi
,
L.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Development of a Research Test Rig for Advanced Analyses in Centrifugal Compressors
,”
Energy Procedia
,
82
, pp.
230
236
.10.1016/j.egypro.2015.12.027
14.
Baroni
,
A.
,
Romani
,
L.
,
Catalani
,
I.
,
Toni
,
L.
,
Biliotti
,
D.
,
Balduzzi
,
F.
,
Bianchini
,
A.
, and
Ferrara
,
G.
,
2023
, “
An Experimental and Numerical Investigation on the Impact of Tip Gap on the Performance of Vaned Diffuser for Industrial Centrifugal Compressors
,” Proceedings of the 15th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics Energy Procedia (
ETC15
), Budapest, Hungary, Apr. 24–28, Paper No. ETC2023-328.10.29008/ETC2023-328
15.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2016
, “
An Academic Test Rig for Industrial Centrifugal Compressor Stages: A Design Approach
,”
ASME
Paper No. GT2016-57697.10.1115/GT2016-57697
16.
Baroni
,
A.
,
Catalani
,
I.
,
Romani
,
L.
,
Bicchi
,
M.
,
Balduzzi
,
F.
,
Marconcini
,
M.
,
Bianchini
,
A.
, et al.,
2023
, “
A Critical Analysis on the Impact of External Losses on the Performance of a Centrifugal Compressor Stage—Experimental and Multi-Fidelity Numerical Assessment
,”
ASME
Paper No. GT2023-102488.10.1115/GT2023-102488
17.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
18.
Catalani
,
I.
,
Agnolucci
,
A.
,
Balduzzi
,
F.
,
Bianchini
,
A.
,
Arnone
,
A.
,
Ferrara
,
G.
,
Vichi
,
G.
,
Bellissima
,
A.
,
Minamino
,
R.
, and
Asai
,
G.
,
2021
, “
Aerodynamic Optimization of a Turbocharger Unit Based on the Overall Efficiency Enhancement of an Internal Combustion Engine for Stationary Power Production
,”
ASME
Paper No. GT2021-58843.10.1115/GT2021-58843
19.
Bianchini
,
A.
,
Andreini
,
G.
,
Ferrari
,
L.
,
Rubino
,
D. T.
, and
Ferrara
,
G.
,
2019
, “
Development of a Criterion for a Robust Identification of Diffuser Rotating Stall Onset in Industrial Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021003
.10.1115/1.4040863
20.
Bianchini
,
A.
,
Biliotti
,
D.
,
Giachi
,
M.
,
Belardini
,
E.
,
Tapinassi
,
L.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2014
, “
Some Guidelines for the Experimental Characterization of Vaneless Diffuser Rotating Stall in Stages of Industrial Centrifugal Compressors
,”
ASME
Paper No. GT2014-26401.10.1115/GT2014-26401
21.
Bianchini
,
A.
,
Biliotti
,
D.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
, and
Vannini
,
G.
,
2013
, “
A Systematic Approach to Estimate the Impact of the Aerodynamic Force Induced by Rotating Stall in a Vaneless Diffuser on the Rotordynamic Behavior of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112502
.10.1115/1.4025065
You do not currently have access to this content.