Graphical Abstract Figure

From cradle to grave life cycle analysis of hydrogen engines adopting diverse hydrogen production routes.

Graphical Abstract Figure

From cradle to grave life cycle analysis of hydrogen engines adopting diverse hydrogen production routes.

Close modal

Abstract

In the effort of achieving net-zero greenhouse gas (GHG) emissions, hydrogen is becoming increasingly relevant in several sectors such as automotive, cogeneration, maritime, off-road, and railroad. However, hydrogen can be produced from different routes involving different production processes and feedstocks. Contrarily to the key role of hydrogen in the transport sector's decarbonization, publications that claim to address the environmental impacts of hydrogen are often focused on global warming potential (GWP). This paper focuses on the environmental impacts of hydrogen production considering different production routes (i.e., steam methane reforming (SMR), SMR with carbon capture and storage (CCS), coal gasification (CG), CG with CCS, and electrolysis from fossil fuels and from renewables) and a broad set of environmental indicators. The life cycle assessment (LCA) methodology is applied in the present study with a twofold aim. The first aim is to develop the LCA models of diverse hydrogen production routes and address present and potential well-to-tank (WTT) impacts. The second aim is to apply the previous findings to develop a cradle-to-grave LCA of a hydrogen engine, serving as a case study for the automotive sector. The LCA models are developed using simapro v.9.4.0.3 as LCA software and ecoinvent v3.8 as background database. The functional units are 1 kg of hydrogen for the cradle-to-gate boundary and 1 mile of vehicle lifetime for the cradle-to-grave boundary. The traci 2.1 method developed by the U.S. Environmental Protection Agency (EPA) is used.

References

1.
Aydin
,
M. I.
, and
Dincer
,
I.
,
2022
, “
A Life Cycle Impact Analysis of Various Hydrogen Production Methods for Public Transportation Sector
,”
Int. J. Hydrogen Energy
,
47
(
93
), pp.
39666
39677
.10.1016/j.ijhydene.2022.09.125
2.
IEA
,
2019
, “
The Future of Hydrogen, Seizing Today's Opportunities
,” International Energy Agency (IEA), Paris, France.https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf
3.
Al-Qahtani
,
A.
,
Parkinson
,
B.
,
Hellgardt
,
K.
,
Shah
,
N.
, and
Guillen-Gosalbez
,
G.
,
2021
, “
Uncovering the True Cost of Hydrogen Production Routes Using Life Cycle Monetisation
,”
Appl. Energy
,
281
, p.
115958
.10.1016/j.apenergy.2020.115958
4.
Lozanovski
,
A.
, and
Schuller
,
O.
,
2011
, “
FC-Hy Guide. Guidance Document on Performing LCAs of Hydrogen Production Systems
,” FC-HyGuide, Europe.https://fc-hyguide.eu/documents/10156/HY_Guidance_Document.pdf
5.
FC-HyGuide
, 2011, “
FC-HyGuide
,” FC-HyGuide, Europe.https://fc-hyguide.eu/
6.
Wilkinson
,
J.
,
Mays
,
T.
, and
McManus
,
M.
,
2023
, “
Review and Meta-Analysis of Recent Life Cycle Assessments of Hydrogen Production
,”
Cleaner Environ. Syst.
,
9
, p.
100116
.10.1016/j.cesys.2023.100116
7.
Burchart
,
D.
,
Gazda-Grzywacz
,
M.
,
Grzywacz
,
P.
,
Burmistrz
,
P.
, and
Zarębska
,
K.
,
2022
, “
Life Cycle Assessment of Hydrogen Production From Coal Gasification as an Alternative Transport Fuel
,”
Energies
,
16
(
1
), p.
383
.10.3390/en16010383
8.
Masoni
,
P.
, and
Zamagni
,
A.
,
2011
, “
FC-Hy Guide. Guidance Document on Performing LCAs of Fuel Cells
,” FC-HyGuide, Europe.https://www.researchgate.net/publication/232770114_GUIDANCE_DOCUMENT_FOR_PERFORMING_LCA_ON_FUEL_CELLS
9.
Prussi
,
M.
,
Yugo
,
M.
,
De Prada
,
L.
,
Padella
,
M.
, and
Edwards
,
R.
,
2020
, “
JEC Well-to-Wheels Report V5
,”
Publications Office of the European Union
,
Luxembourg, Luxembourg
, Report No.
KJ-NA-30284-EN-N
.https://www.concawe.eu/wp-content/uploads/jec_wtw_v5_121213_final.pdf
10.
European Commission
,
2023
, “
EF Database
,” European Commission, Brussels, Belgium.
12.
Cai
,
H.
,
Prussi
,
M.
,
Ou
,
L.
,
Wang
,
M.
,
Yugo
,
M.
,
Lonza
,
L.
, and
Scarlat
,
N.
,
2022
, “
Decarbonization Potential of On-Road Fuels and Powertrains in the European Union and the United States: A Well-to-Wheels Assessment
,”
Sustainable Energy Fuels
,
6
(
19
), pp.
4398
4417
.10.1039/D2SE00411A
13.
Argonne National Laboratory
,
2023
, “Greet®,” Argonne National Laboratory, Lemont, IL.https://www.anl.gov/esia/reference/greet the-greenhouse-gases-regulated-emissions-and-energy-use-in-technologies-model
14.
ISO
,
2021
, “
Environmental Management. Life Cycle Assessment. Principles and Framework
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 14040:2021.
15.
ISO
,
2021
, “
Environmental Management. Life Cycle Assessment. Requirements and Guidelines
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 14044:2021.
16.
Garbe
,
J. S.
,
2020
, “
Life Cycle Assessment of PEM Fuel Cell Vehicles
,”
Master thesis
, Technische Universität Braunschweig, Braunschweig, Germany.https://upcommons.upc.edu/bitstream/handle/2117/329732/2020-santesteban-lca.of.pem.fuel.cell.vehicle.pdf
17.
U.S. EPA,
2022
, “
Final Rule and Related Materials for Control of Air Pollution From New Motor Vehicles: Heavy-Duty Engine and Vehicle Standards
,” United States Environmental Protection Agency, Washington, DC, accessed Feb. 29, 2024, https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-and-related-materials-control-air-pollution
18.
PRé Sustainability B.V.
,
2024
, “SimaPro,” PRé Sustainability, Amersfoort, The Netherlands.https://pre-sustainability.com/
19.
Wernet
,
G.
,
Bauer
,
C.
,
Steubing
,
B.
,
Reinhard
,
J.
,
Moreno-Ruiz
,
E.
, and
Weidema
,
B.
,
2016
, “
The Ecoinvent Database Version 3 (Part I): Overview and Methodology
,”
Int. J. Life Cycle Assess.
,
21
(
9
), pp.
1218
1230
.10.1007/s11367-016-1087-8
20.
U.S. EPA
,
2015
, “
Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI)
,” United States Environmental Protection Agency, Washington, DC, accessed Apr. 22, 2024, https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci
21.
Susmozas
,
A.
,
Iribarren
,
D.
,
Zapp
,
P.
,
Linβen
,
J.
, and
Dufour
,
J.
,
2016
, “
Life-Cycle Performance of Hydrogen Production Via Indirect Biomass Gasification With CO2 Capture
,”
Int. J. Hydrogen Energy
,
41
(
42
), pp.
19484
19491
.10.1016/j.ijhydene.2016.02.053
22.
Ali
,
S. M.
,
Alkhatib
,
I. I. I.
,
AlHajaj
,
A.
, and
Vega
,
L. F.
,
2023
, “
How Sustainable and Profitable Are Large-Scale Hydrogen Production Plants From CH4 and H2S?
,”
J. Cleaner Prod.
,
428
, p.
139475
.10.1016/j.jclepro.2023.139475
23.
U.S. Department of Energy
,
2024
, “
Alternative Fuels Data Center: Alternative Fueling Station Locator
,” U.S. Department of Energy, Washington, DC, accessed Apr. 19, 2024, https://afdc.energy.gov/stations
24.
Gilani
,
H. R.
, and
Sanchez
,
D. L.
,
2020
, “
Introduction to the Hydrogen Market in California
,” Board of Forestry and Fire Protection, Sacramento, CA.https://bof.fire.ca.gov/media/10190/introduction-to-the-hydrogen-market-in-california-draft-for-comment_ada.pdf
25.
Krishnan
,
S.
,
Corona
,
B.
,
Kramer
,
G. J.
,
Junginger
,
M.
, and
Koning
,
V.
,
2024
, “
Prospective LCA of Alkaline and PEM Electrolyser Systems
,”
Int. J. Hydrogen Energy
,
55
, pp.
26
41
.10.1016/j.ijhydene.2023.10.192
26.
U.S. EPA
,
2014
, “
Vehicle Weight Classifications for the Emission Standards Reference Guide
,” United States Environmental Protection Agency, Washington, DC, accessed Mar. 20, 2024, https://www.epa.gov/emission-standards-reference-guide/vehicle-weight-classifications-emission-standards-reference
27.
EPA's National Vehicle and Fuel Emissions Laboratory
,
2023
, “
Data on Cars Used for Testing Fuel Economy
,” USEPA, Ann Arbor, MI.https://www.epa.gov/compliance-and-fuel-economy-data/data-cars-used-testing-fuel-economy
28.
Assessment and Standards Division Office of Transportation and Air Quality, U.S. Environmental Protection Agency
,
2014
, “
Brake and Tire Wear Emissions From On-Road Vehicles in MOVES2014
,” U.S. Environmental Protection Agency, Washington, DC, Report No.
EPA-420-R-14-013
.https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=525701
29.
Malagrinò
,
G.
,
Accardo
,
A.
,
Costantino
,
T.
,
Pensato
,
M.
, and
Spessa
,
E.
,
2024
, “
Life Cycle Assessment of a State-of-the-Art Diesel Powered Engine and Preliminary Evaluation of Its Conversion Into a Novel Hydrogen Powered Engine
,”
SAE
Paper No. 2024-01-2442.10.4271/2024-01-2442
30.
Accardo
,
A.
,
Costantino
,
T.
,
Malagrinò
,
G.
,
Pensato
,
M.
, and
Spessa
,
E.
,
2024
, “
Greenhouse Gas Emissions of a Hydrogen Engine for Automotive Application Through Life-Cycle Assessment
,”
Energies
,
17
(
11
), p.
2571
.10.3390/en17112571
31.
Ghandehariun
,
S.
, and
Kumar
,
A.
,
2016
, “
Life Cycle Assessment of Wind-Based Hydrogen Production in Western Canada
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9696
9704
.10.1016/j.ijhydene.2016.04.077
32.
Suleman
,
F.
,
Dincer
,
I.
, and
Agelin-Chaab
,
M.
,
2016
, “
Comparative Impact Assessment Study of Various Hydrogen Production Methods in Terms of Emissions
,”
Int. J. Hydrogen Energy
,
41
(
19
), pp.
8364
8375
.10.1016/j.ijhydene.2015.12.225
33.
Battista
,
F.
,
Montenegro Camacho
,
Y. S.
,
Hernández
,
S.
,
Bensaid
,
S.
,
Herrmann
,
A.
,
Krause
,
H.
,
Trimis
,
D.
, and
Fino
,
D.
,
2017
, “
LCA Evaluation for the Hydrogen Production From Biogas Through the Innovative BioRobur Project Concept
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
14030
14043
.10.1016/j.ijhydene.2016.12.065
34.
Antonini
,
C.
,
Treyer
,
K.
,
Streb
,
A.
,
Van Der Spek
,
M.
,
Bauer
,
C.
, and
Mazzotti
,
M.
,
2020
, “
Hydrogen Production From Natural Gas and Biomethane With Carbon Capture and Storage—A Techno-Environmental Analysis
,”
Sustainable Energy Fuels
,
4
(
6
), pp.
2967
2986
.10.1039/D0SE00222D
35.
Li
,
G.
,
Wang
,
S.
,
Zhao
,
J.
,
Qi
,
H.
,
Ma
,
Z.
,
Cui
,
P.
,
Zhu
,
Z.
,
Gao
,
J.
, and
Wang
,
Y.
,
2020
, “
Life Cycle Assessment and Techno-Economic Analysis of Biomass-to-Hydrogen Production With Methane Tri-Reforming
,”
Energy
,
199
, p.
117488
.10.1016/j.energy.2020.117488
36.
Sadeghi
,
S.
,
Ghandehariun
,
S.
, and
Rosen
,
M. A.
,
2020
, “
Comparative Economic and Life Cycle Assessment of Solar-Based Hydrogen Production for Oil and Gas Industries
,”
Energy
,
208
, p.
118347
.10.1016/j.energy.2020.118347
37.
Valente
,
A.
,
Iribarren
,
D.
, and
Dufour
,
J.
,
2020
, “
Prospective Carbon Footprint Comparison of Hydrogen Options
,”
Sci. Total Environ.
,
728
, p.
138212
.10.1016/j.scitotenv.2020.138212
38.
Chisalita
,
D.-A.
,
Petrescu
,
L.
,
Galusnyak
,
S. C.
, and
Cormos
,
C.-C.
,
2023
, “
Environmental Evaluation of Hydrogen Production Employing Innovative Chemical Looping Technologies—A Romanian Case Study
,”
Int. J. Hydrogen Energy
,
48
(
32
), pp.
12112
12128
.10.1016/j.ijhydene.2022.06.029
39.
Hermesmann
,
M.
, and
Müller
,
T. E.
,
2022
, “
Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems
,”
Prog. Energy Combust. Sci.
,
90
, p.
100996
.10.1016/j.pecs.2022.100996
40.
Lui
,
J.
,
Sloan
,
W.
,
Paul
,
M. C.
,
Flynn
,
D.
, and
You
,
S.
,
2022
, “
Life Cycle Assessment of Waste-to-Hydrogen Systems for Fuel Cell Electric Buses in Glasgow, Scotland
,”
Bioresour. Technol.
,
359
, p.
127464
.10.1016/j.biortech.2022.127464
41.
Chen
,
J.
,
Liu
,
Y.
,
Wu
,
X.
,
E
,
J.
,
Leng
,
E.
,
Zhang
,
F.
, and
Liao
,
G.
,
2022
, “
Thermodynamic, Environmental Analysis and Comprehensive Evaluation of Supercritical Water Gasification of Biomass Fermentation Residue
,”
J. Cleaner Prod.
,
361
, p.
132126
.10.1016/j.jclepro.2022.132126
42.
Moreno
,
J.
,
Cobo
,
M.
,
Barraza-Botet
,
C.
, and
Sanchez
,
N.
,
2022
, “
Role of Low Carbon Emission H2 in the Energy Transition of Colombia: Environmental Assessment of H2 Production Pathways for a Certification Scheme
,”
Energy Convers. Manage.: X
,
16
, p.
100312
.10.1016/j.ecmx.2022.100312
43.
Oh
,
V. B.-Y.
,
Ng
,
S.-F.
, and
Ong
,
W.-J.
,
2022
, “
Is Photocatalytic Hydrogen Production Sustainable?—Assessing the Potential Environmental Enhancement of Photocatalytic Technology Against Steam Methane Reforming and Electrocatalysis
,”
J. Cleaner Prod.
,
379
, p.
134673
.10.1016/j.jclepro.2022.134673
44.
Henriksen
,
M. S.
,
Matthews
,
H. S.
,
White
,
J.
,
Walsh
,
L.
,
Grol
,
E.
,
Jamieson
,
M.
, and
Skone
,
T. J.
,
2024
, “
Tradeoffs in Life Cycle Water Use and Greenhouse Gas Emissions of Hydrogen Production Pathways
,”
Int. J. Hydrogen Energy
,
49
, pp.
1221
1234
.10.1016/j.ijhydene.2023.08.079
45.
Matin
,
N. S.
, and
Flanagan
,
W. P.
,
2024
, “
Environmental Performance of Nonthermal Plasma Dry and Conventional Steam Reforming of Methane for Hydrogen Production: Application of Life Cycle Assessment Methodology
,”
Int. J. Hydrogen Energy
,
49
, pp.
1405
1413
.10.1016/j.ijhydene.2023.10.106
46.
Patel
,
G. H.
,
Havukainen
,
J.
,
Horttanainen
,
M.
,
Soukka
,
R.
, and
Tuomaala
,
M.
,
2024
, “
Climate Change Performance of Hydrogen Production Based on Life Cycle Assessment
,”
Green Chem.
,
26
(
2
), pp.
992
1006
.10.1039/D3GC02410E
47.
Zang
,
G.
,
Graham
,
E. J.
, and
Mallapragada
,
D.
,
2024
, “
H2 Production Through Natural Gas Reforming and Carbon Capture: A Techno-Economic and Life Cycle Analysis Comparison
,”
Int. J. Hydrogen Energy
,
49
, pp.
1288
1303
.10.1016/j.ijhydene.2023.09.230
You do not currently have access to this content.