Abstract

Brush seals are utilized in turbines to minimize leakage flows and enhance thermal efficiency. Their widespread use faces challenges like pressure-stiffening and hysteresis, leading to unpredictable performance. This work introduces an advanced numerical model to simulate interbristle frictional contact, shaft and backing ring interaction, and three-dimensional (3D) bristle bending. The model is adopted to investigate multibristle brush seal's behavior under shaft radial movements and pressure loading. Backing ring friction emerges as a vital factor in hysteresis modeling, lessening the impact of shaft friction. When the shaft retracts, modeling the bristle tip clearance becomes important. The clearance greatly increases leakage flowrate and changes bristles' aerodynamic loading distribution. With clearance, the normal force on upstream bristles rises markedly, opposing bristle hang-up, while the axial force decreases in downstream bristles, alleviating the bristle pack compression. Considering these factors, an improved model for pressurized seals in the shaft retraction phase is developed and compared to experimental data in the literature. Frictional interbristle contact significantly modifies the distribution of local tip force through the pack. These effects would influence localized wear and heat generation across the brush seal pack, shedding light on the uneven wear patterns often observed in experiments. The present high-fidelity model can capture these complex interactions, offering a means to deepen our understanding of the physical mechanisms underpinning novel brush seal designs.

References

1.
Chupp
,
R. E.
,
Ghasripoor
,
F.
,
Turnquist
,
N. A.
,
Demiroglu
,
M.
, and
Aksi
,
M. F.
,
2002
, “
Advanced Seals for Industrial Turbine Applications: Dynamic Seal Development
,”
J. Propul. Power
,
18
(
6
), pp.
1260
1266
.10.2514/2.6061
2.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
3.
Aksit
,
M. F.
,
2012
, “
Brush Seals and Common Issues in Brush Seal Applications
,” NATO Paper No.
NATO RTO-AVT-188-KN4
.https://core.ac.uk/download/pdf/32328336.pdf
4.
Aksit
,
M. F.
,
Kandemir
,
I.
,
Dogu
,
Y.
, and
Kizil
,
H.
,
2006
, “
An Investigation of Pressure Stiffness Coupling in Brush Seals
,” ISROMAC Paper No.
ISROMAC-11-4
.https://www.researchgate.net/publication/289412313_An_investigation_of_pressure_stiffness_coupling_in_brush_seals
5.
Demiroglu
,
M.
,
Gursoy
,
M.
, and
Tichy
,
J. A.
,
2007
, “
An Investigation of Tip Force Characteristics of Brush Seals
,”
ASME
Paper No. GT2007-28042.10.1115/GT2007-28042
6.
Stango
,
R. J.
,
Zhao
,
H.
, and
Shia
,
C. Y.
,
2003
, “
Analysis of Contact Mechanics for Rotor-Bristle Interference of Brush Seal
,”
ASME J. Tribol.
,
125
(
2
), pp.
414
421
.10.1115/1.1510879
7.
Zhao
,
H.
, and
Stango
,
R. J.
,
2004
, “
Effect of Flow-Induced Radial Load on Brush Seal/Rotor Contact Mechanics
,”
ASME J. Tribol.
,
126
(
1
), pp.
208
215
.10.1115/1.1609492
8.
Zhao
,
H.
, and
Stango
,
R. J.
,
2007
, “
Analytical Approach for Investigating Bristle/Backplate Hysteresis Phenomenon in Brush Seals
,”
J. Propul. Power
,
23
(
2
), pp.
273
282
.10.2514/1.20682
9.
Zhao
,
H.
, and
Stango
,
R. J.
,
2007
, “
Role of Distributed Interbristle Friction Force on Brush Seal Hysteresis
,”
ASME J. Tribol.
,
129
(
1
), pp.
199
204
.10.1115/1.2401218
10.
Turner
,
M. T.
,
Chew
,
J. W.
, and
Long
,
C. A.
,
1998
, “
Experimental Investigation and Mathematical Modeling of Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
573
579
.10.1115/1.2818185
11.
Chen
,
L. H.
,
Wood
,
P. E.
,
Jones
,
T. V.
, and
Chew
,
J. W.
,
1999
, “
An Iterative CFD and Mechanical Brush Seal Model and Comparison With Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
656
662
.10.1115/1.2818522
12.
Yang
,
J.
,
Huang
,
S.
,
Suo
,
S.
, and
Wang
,
A.
,
2020
, “
Investigating the Frictional Force Distributions and Inter-Stage Imbalance of a Two-Stage Brush Seal
,”
AIP Adv.
,
10
(
3
), p.
035323
.10.1063/1.5139260
13.
Huang
,
S.
,
Suo
,
S.
,
Li
,
Y.
, and
Wang
,
Y.
,
2014
, “
Theoretical and Experimental Investigation on Tip Forces and Temperature Distributions of the Brush Seal Coupled Aerodynamic Force
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052502
.10.1115/1.4026074
14.
Duran
,
E. T.
,
2022
, “
Brush Seal Contact Force Theory and Correlation With Tests
,”
Alexandria Eng. J.
,
61
(
4
), pp.
2925
2938
.10.1016/j.aej.2021.08.027
15.
Duran
,
E. T.
,
Aksit
,
M. F.
, and
Ozmusul
,
M.
,
2015
, “
Brush Seal Free State Stiffness Analyses, Tests and Inspection on Dynamic Effects
,”
ASME
Paper No. GT2015-44069.10.1115/GT2015-44069
16.
Duran
,
E. T.
,
Aksit
,
M. F.
, and
Ozmusul
,
M.
,
2016
, “
Brush Seal Structural Analysis and Correlation With Tests for Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052502
.10.1115/1.4031565
17.
Phan
,
H. M.
,
Pekris
,
M. J.
, and
Chew
,
J. W.
,
2024
, “
Insights Into Frictional Brush Seal Hysteresis
,”
ASME J. Eng. Gas Turbines Power
,
146
(
8
), p.
081010
.10.1115/1.4064151
18.
Guardino
,
C.
, and
Chew
,
J. W.
,
2005
, “
Numerical Simulation of Three-Dimensional Bristle Bending in Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
583
591
.10.1115/1.1850943
19.
Phan
,
H. M.
, and
He
,
L.
,
2022
, “
Efficient Modeling of Mistuned Blade Aeroelasticity Using Fully-Coupled Two-Scale Method
,”
J. Fluids Struct.
,
115
, p.
103777
.10.1016/j.jfluidstructs.2022.103777
20.
Phan
,
H. M.
, and
He
,
L.
,
2022
, “
Phasing Structural and Aerodynamic Mistuning for Leveraging Aeroelastic Performance
,”
ASME
Paper No. GT2022-82168.10.1115/GT2022-82168
21.
Phan
,
H. M.
,
2022
, “
Modeling of a Turbine Bladerow With Stagger Angle Variation Using the Multi-Fidelity Influence Superposition Method
,”
Aerosp. Sci. Technol.
,
121
, p.
107318
.10.1016/j.ast.2021.107318
22.
Phan
,
H. M.
, and
He
,
L.
,
2021
, “
Efficient Steady and Unsteady Flow Modeling for Arbitrarily Mis-Staggered Bladerow Under Influence of Inlet Distortion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071009
.10.1115/1.4050364
23.
Crudgington
,
P.
, and
Bowsher
,
A.
,
2002
, “
Brush Seal Pack Hysteresis
,”
AIAA
Paper No. 2002-3794.10.2514/6.2002-3794
24.
Crudgington
,
P.
,
Bowsher
,
A.
,
Kirk
,
T.
, and
Walia
,
J.
,
2012
, “
Brush Seal Hysteresis
,”
AIAA
Paper No. 2012-4003.10.2514/6.2012-4003
25.
Kang
,
Y.
,
Liu
,
M.
,
Hu
,
X.
,
Kao-Walter
,
S.
, and
Zhang
,
B.
,
2019
, “
Theoretical and Numerical Investigation Into Brush Seal Hysteresis Without Pressure Differential
,”
Adv. Compos. Lett.
,
28
, p.
28
.10.1177/0963693519885386
26.
Bidkar
,
R. A.
,
Zheng
,
X.
,
Demiroglu
,
M.
, and
Turnquist
,
N.
,
2011
, “
Stiffness Measurement for Pressure-Loaded Brush Seals
,”
ASME
Paper No. GT2011-45399.10.1115/GT2011-45399
27.
Franceschini
,
G.
,
Morgan
,
J. J.
,
Jones
,
T. V.
, and
Gillespie
,
D. R.
,
2006
, “
A Slow-Speed Rotating Test Facility for Characterising the Stiffness of Brush Seals
,”
ASME
Paper No. GT2006-91335.10.1115/GT2006-91335
28.
Aksoy
,
S.
, and
Aksit
,
M.
,
2010
, “
Evaluation of Pressure-Stiffness Coupling in Brush Seals
,”
AIAA
Paper No. 2010-6831.10.2514/6.2010-6831
29.
Duran
,
E. T.
,
Aksit
,
M. F.
, and
Ozmusul
,
M.
,
2015
, “
CAE Based Brush Seal Characterization for Stiffness and Stress Levels
,”
ASME
Paper No. GT2015-44068.10.1115/GT2015-44068
30.
Duran
,
E. T.
,
2022
, “
Operational Modal Analyses of Brush Seals and Seating Load Simulations
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071005
.10.1115/1.4053964
31.
Tang
,
J.
,
Liu
,
M.
,
Tao
,
M.
,
Xu
,
J.
, and
Li
,
C.
,
2024
, “
Numerical Research on Contact Friction Force With Different Structural Brush Seal Hysteresis Characteristics Under Differential Pressure
,”
Proc. Inst. Mech. Eng., Part C
,
238
(
7
), pp.
3015
3024
.10.1177/09544062231198354
32.
Dogu
,
Y.
,
Aksit
,
M. F.
,
Demiroglu
,
M.
, and
Dinc
,
O. S.
,
2008
, “
Evaluation of Flow Behavior for Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012507
.10.1115/1.2770479
33.
Franceschini
,
G.
,
Jones
,
T. V.
, and
Gillespie
,
D. R.
,
2010
, “
Improved Understanding of Blow-Down in Filament Seals
,”
ASME J. Turbomach.
,
132
(
4
), p.
041004
.10.1115/1.3213552
34.
Song
,
P.
,
Ma
,
D.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Numerical and Experimental Investigations on the Leakage Flow Characteristics and Temperature Distributions of Brush Seals
,”
ASME
Paper No. GT2023-102763.10.1115/GT2023-102763
35.
Bowen
,
J. P.
,
Bird
,
J. J.
,
Cross
,
H.
,
Jenkins
,
M. R.
,
Bowsher
,
A. A.
,
Crudgington
,
P. F.
,
Sangan
,
C. M.
, and
Scobie
,
J. A.
,
2024
, “
Fluid Dynamic Behavior of Conventional and Pressure Relieving Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
146
(
6
), p.
061001
.10.1115/1.4063775
36.
Pekris
,
M. J.
,
Franceschini
,
G.
, and
Gillespie
,
D. R. H.
,
2012
, “
An Investigation of Flow, Mechanical and Thermal Performance of Conventional and Pressure-Balanced Brush Seals
,”
ASME
Paper No. GT2012-68901.10.1115/GT2012-68901
37.
Trivedi
,
D.
,
Roy
,
B.
,
Demiroglu
,
M.
, and
Zheng
,
X.
,
2013
, “
Experimental Characterization of Variable Bristle Diameter Brush Seal Leakage, Stiffness and Wear
,”
ASME
Paper No. GT2013-95086.10.1115/GT2013-95086
38.
Zheng
,
X.
,
Mack
,
M.
,
Demiroglu
,
M.
,
Trivedi
,
D.
, and
Roy
,
B.
,
2013
, “
Design, Manufacture and Testing of Variable Bristle Diameter Brush Seals
,”
AIAA
Paper No. 2013-3859.10.2514/6.2013-3859
39.
Ma
,
D.
,
Li
,
Z.
, and
Li
,
J.
,
2021
, “
A Three-Dimensional Tube Bundle Model Analysis for Leakage Flow Characteristics of Variable Bristle Diameter Brush Seals With Bristle Pack Stratification
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051014
.10.1115/1.4050065
40.
Liu
,
Y.
,
Chew
,
J. W.
,
Pekris
,
M. J.
, and
Kong
,
X.
,
2020
, “
The Effect of Inlet Swirl on Brush Seal Bristle Deflections and Stability
,”
ASME J. Eng. Gas Turbines Power
,
142
(
7
), p.
071002
.10.1115/1.4046696
You do not currently have access to this content.