Condensation on coherent turbulent liquid jets was investigated experimentally in order to obtain a data base for the liquid side heat transfer coefficient. Jet breakup was identified by means of high-speed photography. Nozzles were formed from smooth and roughened glass tubes to define the initial turbulence level in the jets. Jet diameters of 3–7 mm and lengths of 2–12 cm were tested at jet velocities of 1.4–12 m/s giving Reynolds numbers of 6000–40,000. Viscosity and surface tension were varied by using ethanol, and water from 277–300 K, as test liquids. The Stanton number was found to be essentially independent of jet diameter, but to decrease with length to the power of −0.57, velocity to the power of −0.20, surface tension to the power of −0.30, and viscosity to the power of −0.1.

This content is only available via PDF.
You do not currently have access to this content.