Local entropy generation rates related to viscous dissipation and heat transfer across finite temperature differences can be calculated for isotropic and Newtonian fluids from the temperature and velocity fields in a thermal process. This study consisted of the development of a numerical procedure for the prediction of local entropy generation rates and the application of that procedure to convective heat transfer associated with a fluid jet impinging on a heated wall. The procedure involved expanding an existing computation fluid dynamics computer code to include the numerical calculation of local entropy generation. The modified code was bench-marked against analytical solutions and was then used to simulate a cold fluid jet impinging on a hot wall. The results show that the calculation of local entropy generation is feasible and can provide useful information.

This content is only available via PDF.
You do not currently have access to this content.