Nucleate boiling and critical-heat-flux (CHF) phenomena have been studied extensively for several decades. However, a satisfactory mechanistic description remains elusive. Although the influences of some system parameters such as heater geometry, body forces, etc., have been elucidated, the influences of several others remain in dispute. In this paper, we present our perspective on the current state of CHF modeling. We list possible parameters that are relevant in the process and discuss the interactions among these parameters. The consequences of such interactions are also discussed. We focus on the simplest configuration—saturated pool boiling on flat heaters. Additional complexities such as orientation effects, flow effects, enhanced surfaces, etc., are not addressed. We highlight specific areas on which we believe experimental efforts should focus to obtain improved mechanistic models of CHF. Experimental techniques used in previous studies are evaluated, and recommendations for new or modified techniques are discussed. We believe CHF must be looked at in the boiling plane (q and ΔT) rather than merely as a single heat-flux point. Mechanistically, this leads us to view CHF as the limiting point of the nucleate boiling region rather than as an independent entity. Experimentally, this means that issues related to the high-heat-flux region must be studied and their effects on CHF investigated.

1.
Adamson
A. W.
,
1968
, “
An Adsorption Model for Contact Angle and Spreading
,”
Journal of Colloid and Interface Science
, Vol.
27
, pp.
180
187
.
2.
Berenson
P. J.
,
1962
, “
Experiments on Pool-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
, Vol.
5
, pp.
985
999
.
3.
Bergles, A. E., 1992, “What Is the Real Mechanism of CHF in Pool Boiling?” Proceedings of the Engineering Foundation Conference on Pool and External Flow Boiling, Santa Barbara, CA. pp. 165–170.
4.
Bhat
A. M.
,
Saini
J. S.
, and
Prakash
R.
,
1983
, “
Heat Transfer in Nucleate Boiling at High Heat Fluxes
,”
Int. J. Heat Mass Transfer
, Vol.
26
, pp.
833
840
.
5.
Brown, W. T., Jr., 1967, “Study of Flow Surface Boiling,” Ph.D. Thesis, Department of Mechanical Engineering, MIT, Cambridge, MA.
6.
Carvalho, R. D. M., and Bergles, A. E., 1994, “The Pool Nucleate Boiling Flow Patterns of Vertically Oriented, Small Heaters Boiling on One Side,” 10th International Heat Transfer Conference Proceedings, Heat Transfer 1994, Vol. 5, pp. 25–30.
7.
Dhir
V. K.
, and
Liaw
S. P.
,
1987
, “
Framework for a Unified Model for Nucleate and Transition Pool Boiling
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
111
, pp.
739
746
.
8.
Dhir, V. K., 1990, “Nucleate and Transition Boiling Heat Transfer Under Pool and External Flow Boiling,” Proc. 9th International Heat Conference, Vol. 1, pp. 129–155.
9.
Eddington
R. I.
,
Kenning
D. B. R.
, and
Korneichev
A. I.
,
1978
, “
Comparison of Gas and Vapor Bubble Nucleation on a Brass Surface in Water
,”
Int. J. Heat Mass Transfer
, Vol.
21
, pp.
855
862
.
10.
El-Genk, M. S., and Guo, Z., 1992, “Transient Critical Heat Flux for Inclined and Downward-Facing Flat Surfaces,” presented at the 28th National Heat Transfer Conference, San Diego, CA.
11.
Fujita, Y., 1995, “Frontiers in Boiling Heat Transfer,” Proceedings of the ASME/JSME Thermal Engineering Conference, Maui, HI, Vol. 2, pp. 13–26.
12.
Gaertner, R. F., and Westwater, J. W., 1960, “Population of Active Sites in Nucleate Boiling Heat Transfer,” Chem. Engr. Prog. Symp., Ser. 56, pp. 39–48.
13.
Gaertner
R. F.
,
1965
, “
Photographic Study of Nucleate Boiling on a Horizontal Surface
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
87
, pp.
17
29
.
14.
Gatowski
J. A.
,
Smith
M. K.
, and
Alkidas
A. C.
,
1989
, “
An Experimental Investigation of Surface Thermometry and Heat Flux
,”
Experimental Thermal and Fluid Science
, Vol.
2
, pp.
280
292
.
15.
Haramura
Y.
, and
Katto
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
, Vol.
26
, pp.
389
399
.
16.
Iida, Y., and Kobayasi, K., 1970, “An Experimental Investigation on the Mechanism of Pool Boiling by a Probe Method,” Proc. Int. Heat Transfer Conf., Vol. 5, Paper No. B1.3.
17.
Inada
S.
,
Miyasaka
Y.
, and
Sakumoto
M.
,
1987
, “
Heat Transfer of a Liquid–Solid Contact in a Subcooled Pool Boiling Regime (Transition-Type Boiling Regime and Minute Bubble Emission Boiling Regime)
,”
JSME International Journal
, Vol.
30
, pp.
1957
1964
.
18.
Judd
R. L.
, and
Lavdas
C. H.
,
1980
, “
The Nature of Nucleation Site Interaction
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
102
, pp.
461
464
.
19.
Katto
Y.
, and
Yokoya
S.
,
1968
, “
Principal Mechanism of Boiling Crisis in Pool Boiling
,”
Int. J. Heat Mass Transfer
, Vol.
11
, pp.
993
1002
.
20.
Katto, Y., 1992, “Critical Heat Flux in Pool Boiling,” Proceedings of the Engineering Foundation Conference on Pool and External Flow Boiling, Santa Barbara, CA, pp. 151–164.
21.
Katto
Y.
,
1994
, “
Critical Heat Flux
,”
Int. J. Multiphase Flow
, Vol.
20
, Suppl., pp.
53
90
.
22.
Kenning, D. B. R., 1990, “Wall Temperatures in Nucleate Boiling: Spatial and Temporal Variations,” Proceedings of the 1990 International Heat Transfer Conference, Jerusalem, Vol. 6, pp. 33–38.
23.
Kenning
D. B. R.
,
1992
, “
Wall Temperature Patterns in Nucleate Boiling
,”
Int. J. Heat Mass Transfer
, Vol.
35
, pp.
73
86
.
24.
Kirby, D. B., and Westwater, J. W., 1965, “Bubble and Vapor Behavior on a Heated Horizontal Plate During Pool Boiling Near Burnout,” Chem. Engr. Prog. Symp., Ser. 61, No. 57.
25.
Lay, J. H., and Dhir, V. K., 1994, “A Nearly Theoretical Model for Fully Developed Nucleate Boiling of Saturated Liquids,” Proceedings of 10th International Heat Transfer Conference, Vol. 5, pp. 105–110.
26.
Lee
L.
,
Chen
J. C.
, and
Nelson
R. A.
,
1982
, “
Surface Probe for Measurement of Liquid Contact in Film and Transition Boiling on High-Temperature Surface
,”
Rev. Sci. Instrum.
, Vol.
53
, pp.
2053
2059
.
27.
Lienhard
J. H.
, and
Keeling
K. B.
,
1970
, “
An Induced Convection Effect Upon the Peak Boiling Heat Flux
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
92
, pp.
1
5
.
28.
Lienhard
J. H.
,
1988
, “
Burnout on Cylinders
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
110
, pp.
1271
1286
.
29.
Mirzamoghadam
A. V.
, and
Catton
I.
,
1988
, “
Holographic Interferometry Investigation of Enhanced Tube Meniscus Behavior
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
110
, pp.
208
213
.
30.
Neti
S.
,
Butrie
T. J.
, and
Chen
J. C.
,
1986
, “
Fiber-Optic Liquid Contact Measurement in Pool Boiling
,”
Rev. Sci. Instrum.
, Vol.
57
, pp.
3043
3047
.
31.
Pasamehmetoglu
K. O.
, and
Nelson
R. A.
,
1991
, “
Cavity to Cavity Interaction in Low Heat Flux Nucleate Boiling
,”
AIChE J.
, Vol.
87
, pp.
342
351
.
32.
Pasamehmetoglu
K. O.
,
Chappidi
P. R.
,
Unal
C.
, and
Nelson
R. A.
,
1993
, “
Saturated Pool Nucleate Boiling Mechanisms at High Heat Fluxes
,”
Int. J. Heat Mass Transfer
, Vol.
36
(
15
), pp.
3859
3868
.
33.
Prasad
N. R.
,
Saini
J. S.
, and
Prakash
R.
,
1985
, “
The Effect of Heater Wall Thickness on Heat Transfer in Nucleate Pool Boiling at High Heat Flux
,”
Int. J. Heat Mass Transfer
, Vol.
28
, pp.
1367
1375
.
34.
Raad
T.
, and
Myers
J. E.
,
1971
, “
Nucleation Studies in Pool Boiling on Thin Plates Using Liquid Crystals
,”
AIChE J.
, Vol.
17
, pp.
1260
1261
.
35.
Ragheb
H. S.
, and
Cheng
S. C.
,
1979
, “
Surface Wetted Area During Transition Boiling in Forced Convective Flow
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
101
, pp.
381
383
.
36.
Ramilison
J. M.
,
Sadasivan
P.
, and
Lienhard
J. H.
,
1992
, “
Factors Influencing Burnout on Flat Heaters
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
287
290
.
37.
Rohsenow, W. M., 1988, “What We Don’t Know and Do Know About Nucleate Pool Boiling Heat Transfer,” Proceedings of the ASME Winter Annual Meeting, pp. 169–172.
38.
Sadasivan
P.
,
Chappidi
P. R.
,
Unal
C.
, and
Nelson
R. A.
,
1992
, “
Possible Mechanisms of Macrolayer Formation
,”
Int. Comm. Heat Mass Transfer
, Vol.
19
, pp.
801
815
.
39.
Sadasivan, P., Unal, C., and Nelson, R. A., 1994, “Non-linear Aspects of High Heat Flux Nucleate Boiling Heat Transfer—Formulation & Results,” Proc. 1994 IMECE, ASME HTD-Vol. 298, pp. 91–114.
40.
Shoji, M., and Kuroki, H., 1994, “A Model of Macrolayer Formation in Pool Boiling,” 10th International Heat Transfer Conference Proceedings, Heat Transfer 1994, Vol. 5, pp. 147–152.
41.
Shoukri, M. S. M., and Judd, R. L., 1978, “A Theoretical Model for Bubble Frequency in Nucleate Boiling Including Surface Effects,” 6th Int. Heat Transfer Conference Proceedings, Toronto, Canada, PB-6, pp. 145–150.
42.
Simon, T., and Wu, P.-S., 1993, “Flow Boiling Critical Heat Flux on Small Heated Regions,” High Heat Flux Engineering II, Proceedings of the High Heat Flux Engineering Symposium, Int. Symp. Opt. Appl. Sci., and Engr.
43.
Sultan
M.
, and
Judd
R. L.
,
1978
, “
Spatial Distribution of Active Sites and Bubble Flux Density
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
100
, pp.
56
62
.
44.
Tong
W.
,
Bar-Cohen
A.
, and
Simon
T. W.
,
1991
, “
Investigation of Bubble Flow Regimes in Nucleate Boiling of Highly-Wetting Liquids
,”
ASME/JSME Thermal Engineering Proceedings
, Vol.
2
, pp.
433
439
.
45.
Udell
K. S.
,
Pisano
A. P.
,
Howe
R. T.
,
Muller
R. S.
, and
White
R. M.
,
1990
, “
Microsensors for Heat Transfer and Fluid Flow Measurements
,”
Experimental Thermal and Fluid Science
, Vol.
3
, pp.
52
59
.
46.
Unal
C.
,
Daw
V.
, and
Nelson
R. A.
,
1992
, “
Unifying the Controlling Mechanisms for the Critical Heat Flux and Quenching: The Ability of Liquid to Contact the Hot Surface
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
(
4
), pp.
972
982
.
47.
Unal
C.
,
Sadasivan
P.
, and
Nelson
R. A.
,
1993
, “
On the Hot-Spot-Controlled Critical Heat Flux Mechanism in Saturated Pool Boiling, Part II: The Influence of Contact Angle and Nucleation Site Density
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
(
3
), pp.
813
816
.
48.
van Ourwerkerk
H. J.
,
1972
, “
Burnout in Pool Boiling: The Stability of Boiling Mechanism
,”
Int. J. Heat Mass Transfer
, Vol.
15
, pp.
25
34
.
49.
Wang, C. H., and Dhir, V. K., 1991, “Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface,” Proc. ASME/AIChE National Heat Transfer Conference, Minneapolis, MN, ASME HTD-159, pp. 89–96.
50.
Watwe
A. A.
, and
Hollingsworth
D. K.
,
1994
, “
Liquid Crystal Thermal Images of Surface Temperature During Incipient Pool Boiling
,”
J. Exp. Thermal Fluids Science
, Vol.
9
, pp.
22
33
.
51.
Wayner
P. C.
, and
Coccio
C. L.
,
1971
, “
Heat and Mass Transfer in the Vicinity of the Triple Interline of a Meniscus
,”
AIChE J.
, Vol.
17
, pp.
569
574
.
52.
Wayner
P. C.
,
Kao
Y. K.
, and
LaCroix
L. V.
,
1976
, “
The Interline Heat-Transfer Coefficient of an Evaporating Vapor Film
,”
Int. J. Heat Mass Transfer
, Vol.
19
, pp.
487
492
.
53.
Williams, C. C., and Wickramasinghe, H. K., 1986, “High Resolution Thermal Microscopy,” Proc. IEEE Ultrasonics Symposium, Williamsburg, VA, 393–397.
54.
Yang
S. R.
, and
Kim
R. H.
,
1988
, “
A Mathematical Model of the Pool Boiling Nucleation Site Density in Terms of the Surface Characteristics
,”
Int. J. Heat Mass Transfer
, Vol.
31
, pp.
1127
1135
.
55.
Yu
C. L.
, and
Mesler
R. B.
,
1977
, “
Study of Nucleate Boiling Near the Peak Heat Flux Through Measurements of Transient Surface Temperature
,”
Int. J. Heat Mass Transfer
, Vol.
20
, pp.
827
840
.
56.
Zuber
N.
,
1958
, “
Stability of Boiling Heat Transfer
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
80
, pp.
711
720
.
This content is only available via PDF.
You do not currently have access to this content.