Superlattices consisting of alternating layers of extremely thin films often demonstrate strong quantum size effects that have been utilized to improve conventional devices and develop new ones. The interfaces in these structures also affect their thermophysical properties through reflection and transmission of heat carriers. This work develops models on the effective thermal conductivity of periodic thin-film structures in the parallel direction based on the Boltzmann transport equation. Different interface conditions including specular, diffuse, and partially specular and partially diffuse interfaces, are considered. Results obtained from the partially specular and partially diffuse interface scattering model are in good agreement with experimental data on GaAs/AlAs superlattices. The study shows that the atomic scale interface roughness is the major cause for the measured reduction in the superlattice thermal conductivity. This work also suggests that by controlling interface roughness, the effective thermal conductivity of superlattices made of bulk materials with high thermal conductivities can be reduced to a level comparable to those of amorphous materials, while maintaining high electrical conductivities. This suggestion opens new possibilities in the search of high efficiency thermoelectric materials.

1.
Adachi, S., ed., 1993, Properties of Aluminum Gallium Arsenide, INSPEC, London, United Kingdom.
2.
Auld, B. A., 1990, Acoustic Fields and Waves in Solids, 2d ed., Krieger Publishing Company, Malabar, Florida.
3.
Bode
M. H.
, and
Ourmazd
A.
,
1992
, “
Interfaces in GaAs/AlAs: Perfection and Applications
,”
Journal of Vacuum Science and Technology
, B, Vol.
10
, pp.
1787
1792
.
4.
Born, M., and Wolf, E., 1980, Principles of Optics, Pergamon Press Inc., Tarrytown, NY, pp. 491–555.
5.
Cahill
D. G.
,
Fischer
H. E.
,
Klitsner
T.
,
Swartz
E. T.
, and
Pohl
R. O.
,
1989
, “
Thermal Conductivity of Thin Films: Measurement and Understanding
,”
Journal of Vacuum Science and Technology A
, Vol.
7
, pp.
1259
12669
.
6.
Callaway
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Physical Review
, Vol.
113
, pp.
1046
1051
.
7.
Chen, G., 1996a, “Micro- and Nano-scale Thermal Phenomena in Photonic Devices,” Annual Review of Heat Transfer, Vol. VII, C. L. Tien, ed., pp. 1–57.
8.
Chen, G., 1996b, “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin Film Structures,” ASME HTD-Vol. 323, pp. 121–129.
9.
Chen
G.
, and
Tien
C. L.
,
1992
, “
Partial Coherence Theory of Thin Film Radiative Properties
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
636
643
.
10.
Chen
G.
and
Tien
C. L.
,
1993
, “
Thermal Conductivity of Quantum Well Structures
,”
AIAA Journal of Thermophysics and Heat Transfer
, Vol.
7
, pp.
311
318
.
11.
Chen
G.
,
Tien
C. L.
,
Wu
X.
, and
Smith
J. S.
,
1994
, “
Measurement of Thermal Diffusivity of GaAs/AlGaAs Thin-Film Structures
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
325
331
.
12.
Clemens
B. M.
,
Eesley
G. L.
, and
Paddock
C. A.
,
1988
, “
Time-Resolved Thermal Transport in Compositionally Modulated Metal Films
,”
Physical Review B
, Vol.
37
, pp.
1085
1096
.
13.
Colvard
C.
,
Gant
T. A.
,
Klein
M. V.
,
Merlin
R.
,
Fisher
R.
,
Morkoc
H.
, and
Gossard
A. C.
,
1985
, “
Folded Acoustic and Quantized Optic Phonons in (GaAL) As Superlattices
,”
Physical Review B
, Vol.
31
, pp.
2080
2091
.
14.
Decker, D. L., Koshigoe, L. G., and Ashley, E. J., 1984, “Thermal Properties of Optical Thin Film Materials,” NBS Special Publication, 727, Laser Damage in Optical Materials, pp. 291–297.
15.
Esaki
L.
, and
Tsu
R.
,
1970
, “
Superlattice and Negative Differential Conductivity in Semiconductors
,”
IBM Journal of Research and Development
, Vol.
14
, pp.
61
65
.
16.
Flik
M. I.
, and
Tien
C. L.
,
1990
, “
Size Effects on the Thermal Conductivities of High-Tc Thin-Film Superconductors
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
872
881
.
17.
Giannozzi
P.
,
de Gironcolo
S.
,
Pavone
P.
,
Baroni
S.
,
1991
, “
Abinitio Calculation of Phonon Dispersions in Semiconductors
,”
Physical Review B
, Vol.
43
, pp.
7231
7242
.
18.
Goldsmid, 1964, Thermoelectric Refrigeration, Plenum, New York.
19.
Goodson
K. E.
,
1996
, “
Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructure
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
279
286
.
20.
Goodson
K. E.
,
Flik
M. I.
,
Su
L. T.
, and
Antoniads
D. A.
,
1994
, “
Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
317
324
.
21.
Hatta
I.
,
1990
, “
Thermal Diffusivity Measurement of Thin Films and Multilayered Composites
,”
International Journal of Thermophysics
, Vol.
11
, pp.
293
302
.
22.
Hicks
L. D.
, and
Dresselhaus
M. S.
,
1993
, “
Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Physical Review B
, Vol.
47
, pp.
12727
12731
.
23.
Holland
M. G.
,
1964
, “
Phonon Scattering in Semiconductors from Thermal Conductivity Studies
,”
Physical Review A
, Vol.
134
, pp.
471
480
.
24.
Johnson
M. B.
,
Maier
U.
,
Meier
H.-P.
, and
Salemink
H. W. M.
,
1993
, “
Atomic-Scale View of AlGaAs/GaAs Heterostructures with Cross-Sectional Scanning Tunneling Microscopy
,”
Applied Physics Letters
, Vol.
63
, pp.
1273
1275
.
25.
Kittel, C., 1996, Introductions to Solid State Physics, Wiley, New York.
26.
Kumar
S.
, and
Vradis
G. C.
,
1994
, “
Thermal Conductivity of Thin Metallic Films
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
28
34
.
27.
Lambropoulos, J. C., Jacobs, S. D., Burns, S. J., Shaw-Klein, L., and Hwang, S. S., 1991, “Thermal Conductivity of Thin Films: Measurement and Microstructural Effects,” ASME HTD-Vol. 184, pp. 21–32.
28.
Little
W. A.
,
1959
, “
The Transport of Heat between Dissimilar Solids at Low Temperatures
,”
Canadian Journal of Physics
, Vol.
37
, pp.
334
349
.
29.
Majumdar
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
7
16
.
30.
Mehta
C. L.
,
1963
, “
Coherence-Time and Effective Bandwidth of Blackbody Radiation
,”
IL Nuovo Cimento
, Vol.
18
, pp.
402
408
.
31.
Narayanamurti
V.
,
Stormer
H. L.
,
Chin
M. A.
,
Gossard
A. C.
, and
Wiegmann
W.
,
1979
, “
Selective Transmission of High-Frequency Phonons by a Superlattice: the ‘Dielectric’ Phonon Filter
,”
Physical Review Letters
, Vol.
43
, pp.
2012
2016
.
32.
Nath
P.
, and
Chopra
K. L.
,
1973
, “
Experimental Determination of the Thermal Conductivity of Thin Films
,”
Thin Solid Films
, Vol.
18
, pp.
29
37
.
33.
Qiu
T. Q.
, and
Tien
C. L.
,
1993
, “
Size Effects on Nonequilibrium Laser Heating of Metal Films
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
842
847
.
34.
Ren
S. Y.
, and
Dow
J. D.
,
1982
, “
Thermal Conductivity of Superlattice
,”
Physical Review B
, Vol.
25
, pp.
3750
3755
.
35.
Ruf
T.
,
Spitzer
J.
,
Sapega
V. F.
,
Belitsky
V. I.
,
Cardona
M.
, and
Ploog
K.
,
1994
, “
Interface Roughness and Homogeneous Linewidths in Quantum Wells and Superlattices Studied by Resonant Acoustic-Phonon Raman Scattering
,”
Physical Review B
, Vol.
50
, pp.
1792
1806
.
36.
Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M., and Matsusue, T., 1987, “Interface Roughness Scattering in GaAs/AlAs Quantum Wells,” Applied Physics Letters, pp. 1934–1936.
37.
Siegel, R., and Howell, R., 1992, Thermal Radiation Heat Transfer, Hemisphere, Washington, D.C.
38.
Slack
G. A.
,
1979
, “
The Thermal Conductivity of Nonmetallic Crystals
,”
Solid State Physics
, Vol.
34
, pp.
1
71
.
39.
Smith
A. R.
,
Chao
K.-J.
,
Shih
C. K.
,
Shih
Y. C.
, and
Streetman
B. G.
,
1994
, “
Cross-Sectional Scanning Tunneling Microscopy Study of GaAs/AlAs Short Period Superlattices: The Influence of Growth Interrupt on the Interfacial Structure
,”
Applied Physics Letters
, Vol.
66
, pp.
478
480
.
40.
Swartz
E. T.
, and
Pohl
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Review of Modern Physics
, Vol.
61
, pp.
605
668
.
41.
Tellier, C. R., and Tosser, A. J., 1982, Size Effects in Thin Films, Elsevier, Amsterdam.
42.
Tien
C. L.
, and
Chen
G.
,
1994
, “
Challenges in Microscale Radiative and Conductive Heat Transfer
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
799
807
.
43.
Tien, C. L., Amarly, B. F., and Jagannathan, P. S., 1969, “Thermal Conductivity of Thin Metallic Films and Wires at Cryogenic Temperatures,” Proceedings of the 8th Thermal Conductivity Conference, Plenum Press, pp. 13–20.
44.
Waugh
J. L. T.
, and
Dolling
G.
,
1963
, “
Crystal Dynamics of Gallium Arsenide
,”
Physical Review
, Vol.
132
, pp.
2410
2412
.
45.
Weis, O., 1986, “Phonon Radiation Across Solid/Solid Interfaces with the Acoustic Mismatch Model,” Nonequiiibrium Phonons in Nonmetallic Crystals, W. Eisenmenger and A. A. Kaplyanski, eds., North-Holland, Amsterdam.
46.
Weisbuch, C., and Vinter, B., 1991, Quantum Semiconductor Structures, Academic Press, Boston.
47.
Wu
Z. L.
,
Wei
L. H.
, and
Kuo
P. K.
,
1992
, “
Thermal Transport Studies of Nanometric Layer Stacks by Mirage Detection
,”
SPIE
, Vol.
1848
, pp.
361
374
.
48.
Yao
T.
,
1987
, “
Thermal Properties of AlAs/GaAs Superlattices
,”
Applied Physics Letters
, Vol.
51
, pp.
1798
1800
.
1.
Yu
X. Y.
,
Chen
G.
,
Verma
A.
, and
Smith
J. S.
,
1995
, “
Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Thin Film Structures
,”
Applied Physics Letters
, Vol.
67
, pp.
3553
3556
,
2.
Applied Physics Letters
, Vol.
68
, p.
1303
1303
.
1.
Zhang
Z. C.
,
Roger
J. P.
,
Fournier
D.
,
Boccara
A. C.
, et al.,
1990
, “
Thermal Diffusivity of Amorphous Semiconductor Superlattice Films
,”
Thin Solid Films
, Vol.
186
, pp.
361
366
.
2.
Ziman, J. M., 1960, Electrons and Phonons, Clarendon Press, Oxford.
This content is only available via PDF.
You do not currently have access to this content.