This paper documents the geometric optimization of an assembly of staggered vertical plates that are installed in a fixed volume. The heat transfer is by laminar natural convection. The objective is to maximize the overall thermal conductance between the assembly of plates and the surrounding fluid. The geometric parameters that vary are the horizontal spacing between adjacent columns of plates, the number of plates mounted in each vertical column, the plate dimensions, and the stagger between columns. The optimization is performed numerically and experimentally in the range Pr = 0.72 and 103 ≤ RaL ≤ 106, where RaL is the Rayleigh number based on the vertical dimension of the assembly (L). The results for the optimal horizontal spacing are correlated using formulas derived from the theory of the intersection of asymptotes (Bejan, 1984, 1995).

1.
Anand
N. K.
,
Kim
S. H.
, and
Fletcher
L. S.
,
1992
, “
The Effect of Plate Spacing on Free Convection Between Heated Parallel Plates
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
515
518
.
2.
Bar-Cohen
A.
, and
Rohsenow
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
106
, pp.
116
123
.
3.
Bejan, A., 1984, Convection Heat Transfer, John Wiley & Sons, Inc., New York, p. 157, problem 11.
4.
Bejan, A., 1993, Heat Transfer, John Wiley & Sons, Inc., New York.
5.
Bejan, A., 1995, Convection Heat Transfer, 2nd ed., John Wiley & Sons, Inc., New York, pp. 202–205.
6.
Bejan
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
, Vol.
40
, No.
4
, pp.
799
816
.
7.
Bejan
A.
, and
Lage
J. L.
,
1990
, “
The Prandtl Number Effect on the Transition in Natural Convection Along a Vertical Surface
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
787
790
.
8.
Bejan
A.
,
Fowler
A. J.
, and
Stanescu
G.
,
1995
, “
The Optimal Spacing Between Horizontal Cylinders in a Fixed Volume Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
, Vol.
38
, pp.
2047
2055
.
9.
Churchill
S. W.
, and
Chu
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate
,”
Int. J. Heat Mass Transfer
, Vol.
18
, pp.
1323
1329
.
10.
Dally, J. W., Riley, W. F., and McConnell, K. G., 1993, Instrumentation for Engineering Measurements, John Wiley & Sons, Inc., New York, p. 425.
11.
FIDAP Theory Manual, 1993, Fluid Dynamics International, Evanston, IL, V. 7.0.
12.
Guglielmini
G.
,
Nannei
E.
, and
Tanda
G.
,
1987
, “
Natural Convection and Radiation Heat Transfer From Staggered Vertical Fins
,”
Int. J. Heat Mass Transfer
, Vol.
30
, pp.
1941
1948
.
13.
Howle, L., Georgiadis, J., and Behringer, R., 1992, “Shadowgraphic Visualization of Natural Convection in Rectangular-Grid Porous Layers,” ASME HTD-Vol. 206-1, pp. 17–24.
14.
Hughes
T. J. R.
,
1978
, “
A Simple Scheme for Developing “Upwind” Finite Elements
,”
Int. J. Num. Methods in Eng.
, Vol.
12
, pp.
1359
1365
.
15.
Kim
S. H.
, and
Anand
N. K.
,
1994
a, “
Laminar Developing Flow and Heat Transfer Between a Series of Parallel Plates With Surface-Mounted Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
, Vol.
37
, pp.
2231
2244
.
16.
Kim
S. H.
, and
Anand
N. K.
,
1994
b, “
Turbulent Heat Transfer Between a Series of Parallel Plates With Surface-Mounted Discrete Heat Sources
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
577
587
.
17.
Kim, S. J., and Lee, S. W., 1996, Air Cooling Technology for Electronic Equipment, CRC Press, Boca Raton, FL.
18.
Knight
R. W.
,
Goodling
J. S.
, and
Hall
D. J.
,
1991
, “
Optimal Thermal Design of Forced Convection Heat Sinks—Analytical
,”
ASME Journal of Electronic Packaging
, Vol.
113
, pp.
313
321
.
19.
Ledezma
G. A.
,
Bejan
A.
, and
Errera
M. R.
,
1997
, “
Constructal Tree Networks for Heat Transfer
,”
J. Appl. Phys.
, Vol.
82
(
1
), pp.
89
100
.
20.
Moffat
R. I.
,
1988
, “
Describing Uncertainties in Experimental Results
,”
Exp. Thermal Fluid Sci.
, Vol.
1
, pp.
3
17
.
21.
Peterson
G. P.
, and
Ortega
A.
,
1990
, “
Thermal Control of Electronic Equipment and Devices
,”
Adv. Heat Transfer
, Vol.
20
, pp.
181
314
.
22.
Prakash
C.
, and
Sparrow
E. M.
,
1980
, “
Natural Convection Heat Transfer Performance Evaluations for Discrete- (In-Line or Staggered) and Continuous-Plate Arrays
,”
Num. Heat Transfer
, Vol.
3
, pp.
89
105
.
23.
Reddy, J. N., and Gartling, D. K., 1994, The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Boca Raton, pp. 223–226.
24.
Sparrow
E. M.
, and
Faghri
M.
,
1980
, “
Natural Convection Heat Transfer from the Upper Plate of a Colinear, Separated Pair of Vertical Plates
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
102
, pp.
623
629
.
25.
Tanda
G.
,
1993
, “
Natural Convection Heat Transfer From a Staggered Vertical Plate Array
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
938
945
.
26.
Tanda
G.
,
1995
, “
Experiments on Natural Convection From Two Staggered Vertical Plates
,”
Int. J. Heat Mass Transfer
, Vol.
38
, pp.
533
543
.
27.
Weisberg
A.
,
Bau
H. H.
, and
Zemel
J. N.
,
1992
, “
Analysis of Microchannels for Integrated Cooling
,”
Int. J. Heat Mass Transfer
, Vol.
35
, pp.
2465
2474
.
This content is only available via PDF.
You do not currently have access to this content.