A dimensionless number depending on the usual Prandtl and Marangoni numbers, Πs ∼ Ma/(1 + Pr1) = Ma Pr/(1 + Pr), is introduced for thermocapillary driven flows. Three heat transfer models are proposed in terms of Πs. The first model on laminar flow, using some dimensional arguments with a flow scale and the boundary layer concept, leads to Nu ∼ Πs1/4, Nu being the usual Nusselt number. The second model on transition flow, extending Landau’s original idea on the amplitude of disturbances past marginal stability of isothermal flow, leads to Nu − 1 ∼ (ΠS−ΠSc)1/2, ΠSc corresponding to the critical value of Πs for the marginal state. The third model on turbulent flow, introduces a thermal microscale ηθ ∼ (1 + Pr-1)1/4(να2/Ps)1/4 = (1 + Pr)1/43/Ps)1/4, with ν and α, respectively, being kinematic and thermal diffusivities, and Ps the production rate of thermocapillary energy. The first expression relating ηθ to Prandtl number explicitly includes its limit for Pr → ∞, ηθB ∼ (να2/ε)1/4, which is a Batchelor scale, and the second one explicitly includes its limit for Pr → 0, ηθC ∼ (α3/ε)1/4, which is an Oboukhov-Corrsin scale. In terms of ηθ and an integral scale l, the model leads to Nu ∼ l/ηθΠs1/3. Recent experimental literature are interpreted by special cases of the foregoing models corresponding to Pr > 1.

1.
Arpacı
V. S.
,
1986
, “
Microscales of Turbulence and Heat Transfer Correlations
,”
Int. J. Heat Mass Transfer
, Vol.
29
, No.
8
, pp.
1071
1078
.
2.
Arpacı
V. S.
,
1990
, “
Microscales of Turbulence and Heat Transfer Correlations
,”
Annual Review of Heat Transfer
, Vol.
3
, pp.
195
231
.
3.
Arpacı, V. S., 1994a, Microscales of Turbulence-Mass Transfer Correlations, keynote lecture in the International Symposium on Turbulence and Heat Mass Transfer, Lisbon.
4.
Arpacı, V. S., 1994b, Microscales of Turbulence-Heat Transfer Correlations, keynote lecture in the Tenth International Heat Transfer Conference, Brighton, UK.
5.
Arpacı
V. S.
,
1995
a, “
Buoyant Turbulent Flow Driven by Internal Energy Generation
,”
Int. J. Heat Mass Transfer
, Vol.
38
, No.
15
, pp.
2761
2770
.
6.
Arpacı
V. S.
,
1995
b, “
Microscales of Turbulent Combustion
,”
Prog. Energy Combust. Sci.
, Vol.
21
, pp.
153
171
.
7.
Batchelor
G. K.
,
1959
, “
Small-Scale Variation of Convected Quantities Like Temperature in a Turbulent Fluid
,”
J. Fluid Mech.
, Vol.
5
, pp.
113
139
.
8.
Bergman
T. L.
, and
Ramadhyani
S.
,
1986
, “
Combined Buoyancy and Thermocapillary-Driven Convection in Open Square Cavities
,”
Numerical Heat Transfer
, Vol.
9
, pp.
441
451
.
9.
Block
M. J.
,
1956
, “
Surface Tension as the Cause of Be´nard Cells and Surface Deformation in a Liquid Film
,”
Nature
, Vol.
178
, p.
650
650
.
10.
Carpenter
B. M.
, and
Homsy
G. M.
,
1989
, “
Combined Buoyant and Thermo-capillary Flow in a Cavity
,”
J. Fluid Mech.
, Vol.
207
, pp.
121
132
.
11.
Carpenter
B. M.
, and
Homsy
G. M.
,
1990
, “
High Marangoni Number Convection in a Square Cavity: Part II
,”
Phys. Fluids A
, Vol.
2
, pp.
137
149
.
12.
Chandrasekhar, S., 1961, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, England.
13.
Chang
C. E.
, and
Wilcox
W. R.
,
1976
, “
Analysis of Surface Tension Driven Flow in Floating Zone Melting
,”
Int. J. Heat Mass Transfer
, Vol.
19
, pp.
355
366
.
14.
Chen
M. M.
,
1987
, “
Thermocapillary Convection in Materials Processing
,”
Interdisciplinary Issues in Materials Processing and Manufacturing
, Vol.
2
, ASME, NY, pp.
541
558
.
15.
Corrsin
S.
,
1951
, “
On Spectrum of Isotropic Temperature Fluctuations in Isotropic Turbulence
,”
J. Appl. Phys.
, Vol.
22
, No.
4
, pp.
469
473
.
16.
Cowley
S. J.
, and
Davis
S. H.
,
1983
, “
Viscous Thermocapillary Convection at High Marangoni Number
,”
J. Fluid Mech.
, Vol.
135
, pp.
175
188
.
17.
Fu, B. I., and Ostrach, S., 1983, “Numerical Solutions of Floating-Zone Thermocapillary Flow,” Proceedings of the 4th European Symposium on Materials Sciences Under Microgravity, pp. 239–245.
18.
Gorkov
L. P.
,
1958
, “
Stationary Convection in a Plane Liquid Layer Near the Critical Heat Transfer Point
,”
Soviet Physics, JETP
, Vol.
6
, pp.
311
315
.
19.
Hinze, J. O., 1959, Turbulence, McGraw-Hill, New York.
20.
Kamotani
Y.
,
Ostrach
S.
, and
Pline
A.
,
1993
, “
A Thermocapillary Convection Experiment in Microgravity
,”
Heat Transfer in Microgravity
, C. T. Avedesian and V. S. Arpacı, eds., ASME HTD-Vol.
269
, pp.
23
30
.
21.
Kamotani
Y.
,
Chang
A.
, and
Ostrach
S.
,
1994
, “
Effects of Heating Mode on Steady Axisymmetric Thermocapillary Flows in Microgravity
,”
Heat Transfer in Microgravity Systems
, S. S. Sadhal and A. Gopinath, eds., ASME HTD-Vol.
290
, pp.
53
62
.
22.
Kamotani
Y.
,
Chang
A.
, and
Ostrach
S.
,
1996
, “
Effects of Heating Mode on Steady Axisymmetric Thermocapillary Flows in Microgravity
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
191
197
.
23.
Keller
J. R.
, and
Bergman
T. L.
,
1990
, “
Thermocapillary Cavity Convection in Wetting and Nonwetting Liquids
,”
Numerical Heat Transfer
, Vol.
18
, pp.
33
49
.
24.
Kolmogorov
A. N.
,
1941
, “
Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
C. R. Acad. Sci. URSS
, Vol.
30
, pp.
299
301
.
25.
Landau
L. D.
,
1944
, “
On the Problem of Turbulence
,”
C. R. Doklady Acad. Sci. URSS
, Vol.
44
, pp.
311
314
.
26.
Landau, L. D., and Lifshitz, E. M., 1959, Fluid Mechanics, Pergamon, Oxford, England.
27.
Malkus
W.
,
1954
, “
The Heat Transport and Spectrum of Thermal Turbulence
,”
Proc. Roy. Soc. (London) A
, Vol.
225
, pp.
196
212
.
28.
Malkus
W.
, and
Veronis
G.
,
1958
, “
Finite Amplitude Cellular Convection
,”
J. Fluid Mech.
, Vol.
4
, pp.
225
260
.
29.
Mundrane
M.
, and
Zebib
A.
,
1993
, “
Two and Three-Dimensional Buoyant Thermocapillary Convection
,”
Phys. Fluids A
, Vol.
5
, pp.
810
818
.
30.
Nakagawa
Y.
,
1960
, “
Heat Transport by Convection
,”
Physics of Fluids
, Vol.
3
, pp.
82
86
.
31.
Oboukhov
A. M.
,
1949
, “
Structure of the Temperature Field in Turbulent Flows
,”
Izv. Nauk. SSSR, Geogr. i. Geofiz.
, Vol.
13
, p.
58
58
.
32.
Pearson
J. R. A.
,
1958
, “
On Convection Cells Induced by Surface Tension
,”
J. Fluid Mech.
, Vol.
4
, pp.
489
500
.
33.
Squire
H. B.
,
1938
, “
Free Convection from a Heated Vertical Plate
,”
Modern Developments in Fluid Mechanics
, S. Goldstein, ed. Oxford, Vol.
2
, p.
638
638
.
34.
Stuart
J. T.
,
1958
, “
On the Nonlinear Mechanics of Hydrodynamic Stability
,”
J. Fluid Mech.
, Vol.
4
, pp.
1
21
.
35.
Tennekes
H.
,
1968
, “
Simple Model for the Small Scale Structure of Turbulence
,”
Phys. Fluids
, Vol.
11
, pp.
669
671
.
36.
Tennekes, H., and Lumley, O. L., 1972, A First Course in Turbulence, MIT Press, Cambridge, MA.
37.
Veronis
G.
,
1959
, “
Cellular Convection with Finite Amplitude in a Rotating Fluid
,”
J. Fluid Mech.
, Vol.
5
, pp.
401
435
.
38.
Zebib
A.
,
Homsy
G. M.
, and
Meiburg
E.
,
1985
, “
High Marangoni Number Convection in a Square Cavity
,”
Phys. Fluids
, Vol.
28
, pp.
3467
3476
.
This content is only available via PDF.
You do not currently have access to this content.