This study presents a detailed and thorough parametric study of the Leidenfrost point (LFP), which serves as the temperature boundary between the transition and film boiling regimes. Sessile drop evaporation experiments were conducted with acetone, benzene, FC-72, and water on heated aluminum surfaces with either polished, particle blasted, or rough sanded finishes to observe the influential effects of fluid properties, surface roughness, and surface contamination on the LFP. A weak relationship between surface energies and the LFP was observed by performing droplet evaporation experiments with water on polished copper, nickel, and silver surfaces. Additional parameters which were investigated and found to have negligible influence on the LFP included liquid subcooling, liquid degassing, surface roughness on the polished level, and the presence of polishing paste residues. The accumulated LFP data of this study was used to assess several existing models which attempt to identify the mechanisms which govern the LFP. The disagreement between the experimental LFP values and those predicted by the various models suggests that an accurate and robust theoretical model which effectively captures the LFP mechanisms is currently unavailable.

1.
Adamson
A. W.
,
1972
, “
Potential Distortion Model for Contact Angle and Spreading II. Temperature Dependent Effects
,”
J. Colloid Interface Sci.
, Vol.
44
, pp.
273
281
.
2.
Adamson, A. W., 1982, Physical Chemistry of Surfaces, John Wiley and Sons, Inc., New York.
3.
Avedisian
C. T.
,
1982
, “
Effect of Pressure on Bubble Growth Within Liquid Droplets at the Superheat Limit
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
104
, pp.
750
757
.
4.
Avedisian
C. T.
, and
Koplik
J.
,
1987
, “
Leidenfrost Boiling of Methanol Droplets on Hot Porous Ceramic Surfaces
,”
Int. J. Heat Mass Transfer
, Vol.
30
, pp.
379
393
.
5.
Baumeister, K. J., Henry, R. E., and Simon, F. F., 1970, “Role of the Surface in the Measurement of the Leidenfrost Temperature,” Augmentation of Convective Heat and Mass Transfer, A. E. Bergles and R. L. Webb, eds., ASME, New York, pp. 91–101.
6.
Baumeister
K. J.
, and
Simon
F. F.
,
1973
, “
Leidenfrost Temperature—Its Correlation for Liquid Metals, Cryogens, Hydrocarbons, and Water
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
95
, pp.
166
173
.
7.
Bell, K. J., 1967, “The Leidenfrost Phenomenon: A Survey,” Chem. Eng. Prog. Symposium Series, Vol. 63, AIChE, New York, pp. 73–82.
8.
Berenson
P. J.
,
1961
, “
Film Boiling Heat Transfer from a Horizontal Surface
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
83
, pp.
351
358
.
9.
Bernardin, J. D., 1993, Intelligent Heat Treatment of Aluminum Alloys: Material, Surface Roughness, and Droplet-Surface Interaction Characteristics, Masters thesis, Purdue University, West Lafayette, Indiana. IN.
10.
Bernardin
J. D.
, and
Mudawar
I.
,
1995
, “
Validation of the Quench Factor Technique in Predicting Hardness in Heat Treatable Aluminum Alloys
,”
Int. J. Heat Mass Transfer
, Vol.
38
, pp.
863
873
.
11.
Bernardin
J. D.
,
Mudawar
I.
, and
Franses
E. I.
,
1997
, “
Contact Angle Temperature Dependence for Water Droplets on Practical Aluminum Surfaces
,”
Int. J. Heat Mass Transfer
, Vol.
40
, pp.
1017
1033
.
12.
Blander
M.
,
Hengstenberg
D.
, and
Katz
J. L.
,
1971
, “
Bubble Nucleation in n-Pentane, n-Hexane, n-Hentane + Hexadecane Mixtures, and Water
,”
J. Phys. Chem.
, Vol.
75
, pp.
3613
3619
.
13.
Blander
M.
, and
Katz
J. L.
,
1975
, “
Bubble Nucleation in Liquids
,”
Amer. Inst. Chem. Eng. J.
, Vol.
21
, pp.
833
848
.
14.
Blaszkowska-Zakrzewska
H.
,
1930
, “
Rate of Evaporation of Liquids from a Heated Metallic Surface
,”
Bulletin International de ’Academie Polonaise
, Vol.
4a–5a
, pp.
188
190
.
15.
Bradfield
W. S.
,
1966
, “
Liquid-Solid Contact in Stable Film Boiling
,”
I & E C Fundamentals
, Vol.
5
, pp.
200
204
.
16.
Carey, V. P., 1992, Liquid-Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Hemisphere, New York.
17.
Eberhart
J. G.
, and
Schnyders
H. C.
,
1973
, “
Application of the Mechanical Stability Condition to the Prediction of the Limit of Superheat for Normal Alkanes, Ether, and Water
,”
J. Phys. Chem.
, Vol.
77
, pp.
2730
2736
.
18.
Eckert, E. R. G., and Drake, Jr., R. M., 1972, Analysis of Heat and Mass Transfer, McGraw-Hill, New York.
19.
Emmerson
G. S.
,
1975
, “
The Effect of Pressure and Surface Material on the Leidenfrost Point of Discrete Drops of Water
,”
Int. J. Heat Mass Transfer
, Vol.
18
, pp.
381
386
.
20.
Emmerson
G. S.
, and
Snoek
C. W.
,
1978
, “
The Effect of Pressure on the Leidenfrost Point of Discrete Drops of Water and Freon on a Brass Surface
,”
Int. J. Heat Mass Transfer
, Vol.
21
, pp.
1081
1086
.
21.
Gerweck
V.
, and
Yadigaroglu
G.
,
1992
, “
A Local Liquation of State for a Fluid in the Presence of a Wall and its Application to Rewetting
,”
Int. J. Heat Mass Transfer
, Vol.
35
, pp.
1823
1832
.
22.
Godleski, E. S., and Bell, K. J., 1966, “The Leidenfrost Phenomenon for Binary Liquid Solutions,” Third International Heat Transfer Conference, Vol. 4, Chicago, IL, AIChE, New York, pp. 51–58.
23.
Gottfried
B. S.
,
Lee
C. J.
, and
Bell
K. J.
,
1966
, “
The Leidenfrost Phenomenon: Film Boiling of Liquid Droplets on a Flat Plate
,”
Int. J. Heat Mass Transfer
, Vol.
9
, pp.
1167
1187
.
24.
Grissom
W. M.
, and
Wierum
F. A.
,
1981
, “
Liquid Spray Cooling of a Heated Surface
,”
Int. J. Heat Mass Transfer
, Vol.
24
, pp.
261
271
.
25.
Han
C. Y.
, and
Griffith
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling–Part I
,”
Int. J. Heat Mass Transfer
, Vol.
8
, pp.
887
904
.
26.
Hiroyasu
H.
,
Kadota
T.
, and
Senda
T.
,
1974
, “
Droplet Evaporation on a Hot Surface in Pressurized and Heated Ambient Gas
,”
Bulletin of the JSME
, Vol.
17
, pp.
1081
1087
.
27.
Hosier
E. R.
, and
Westwater
J. W.
,
1962
, “
Film Boiling on a Horizontal Plate
,”
ARSJ.
, Vol.
32
, pp.
553
558
.
28.
Jeschar
R.
,
Scholz
R.
, and
Reiners
U.
,
1984
, “
Warmeubergang bei der zweiphasigen spritzwasserkuhlung
,”
Gas-Warme Int.
, Vol.
33
, p.
6
6
.
29.
Klimenko
V. V.
, and
Snytin
S. Y.
,
1990
, “
Film Boiling Crisis on a Submerged Heating Surface
,”
Exp. Thermal Fluid Sci.
, Vol.
3
, pp.
467
479
.
30.
Klinzing
W. P.
,
Rozzi
J. C.
, and
Mudawar
I.
,
1992
, “
Film and Transition Boiling Correlations for Quenching of Hot Surfaces with Water Sprays
,”
J. Heat Treating
, Vol.
9
, pp.
91
103
.
31.
Kovalev
S. A.
,
1966
, “
An Investigation of Minimum Heat Fluxes in Pool Boiling of Water
,”
Int. J. Heat Mass Transfer
, Vol.
9
, pp.
1219
1226
.
32.
Labeish
V. G.
,
1994
, “
Thermohydrodynamic Study of a Drop Impact Against a Heated Surface
,”
Exp. Thermal Fluid Sci.
, Vol.
8
, pp.
181
194
.
33.
Lienhard
J. H.
,
1976
, “
Correlation for the Limiting Liquid Superheat
,”
Chem. Eng. Sci.
, Vol.
31
, pp.
847
849
.
34.
Lienhard
J. H.
, and
Karimi
A. H.
,
1978
, “
Corresponding States Correlations of the Extreme Liquid Superheat and Vapor Subcooling
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
100
, pp.
492
495
.
35.
Matsuda
T.
,
Taguchi
H.
, and
Nagao
M.
,
1992
, “
Energetic Properties of NiO Surface Examined by Heat-of-Adsorption Measurement
,”
J. Thermal Analysis
, Vol.
38
, pp.
1835
1845
.
36.
McCann
H.
,
Clarke
L. J.
, and
Masters
A. P.
,
1989
, “
An Experimental Study of Vapor Growth at the Superheat Limit Temperature
,”
Int. J. Heat Mass Transfer
, Vol.
32
, pp.
1077
1093
.
37.
McCormick
J. L.
, and
Westwater
J. W.
,
1965
, “
Nucleation Sites for Dropwise Condensation
,”
Chem. Eng. Sci.
, Vol.
20
, pp.
1021
1036
.
38.
Miller, C. A., and Neogi, P., 1985, Intetfacial Phenomena, Marcel Dekker, New York.
39.
Nikolayev
G. P.
,
Bychenkov
V. V.
, and
Skripov
V. P.
,
1974
, “
Saturated Heat Transfer to Evaporating Droplets from a Hot Wall at Different Pressures
,”
Heat Transfer—Soviet Research
, Vol.
6
, pp.
128
132
.
40.
Nishio, S., and Hirata, M., 1978, “Direct Contact Phenomenon between a Liquid Droplet and High Temperature Solid Surface,” Sixth International Heat Transfer Conference, Vol. 1, Toronto, Canada, Hemisphere, New York, pp. 245–250.
41.
Olek
S.
,
Zvirin
Y.
, and
Elias
E.
,
1988
, “
The Relation between the Rewetting Temperature and the Liquid-Solid Contact Angle
,”
Int. J. Heat Mass Transfer
, Vol.
31
, pp.
898
902
.
42.
Patel, B. M., and Bell, K. J., 1966, “The Leidenfrost Phenomenon for Extended Liquid Masses,” Chem. Eng. Progress Symposium Series, Vol. 62, pp. 62–71.
43.
Ramilison
J. M.
, and
Lienhard
J. H.
,
1987
, “
Transition Boiling Heat Transfer and the Film Transition Regime
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
109
, pp.
746
752
.
44.
Rhodes, T. R., and Bell, K. J., 1978, “The Leidenfrost Phenomenon at Pressures up to the Critical,” Sixth International Heat Transfer Conference, Vol. 1, Toronto, Canada, Hemisphere, New York, pp. 251–255.
45.
Sakurai, A., Shiotsu, M., and Hata, K., 1982, “Steady and Unsteady Film Boiling Heat Transfer at Subatmospheric and Elevated Pressures,” Heat Transfer in Nuclear Reactor Safety, S. G. Bankoff and N. H. Afgan eds., Hemisphere New York, pp. 301–312.
46.
Schroeder-Richter, D., and Bartsch, G., 1990, “The Leidenfrost Phenomenon caused by a Thermo-Mechanical effect of Transition Boiling: A Revisited Problem of Non-Equilibrium Thermodynamics,” Fundamentals of Phase Change: Boiling and Condensation, ASME, New York, pp. 13–20.
47.
Segev
A.
, and
Bankoff
S. G.
,
1980
, “
The Role of Adsorption in Determining the Minimum Film Boiling Temperature
,”
Int. J. Heat Mass Transfer
, Vol.
23
, pp.
637
642
.
48.
Shepherd
J. E.
, and
Sturtevant
B.
,
1982
, “
Rapid Evaporation at the Superheat Limit
,”
J. Fluid Mechanics
, Vol.
121
, pp.
379
402
.
49.
Skripov, V. P., 1974, Metastable Liquids, John Wiley and Sons, New York.
50.
Skripov, V. P., Sinitsyn, E. N., and Pavlov, P. A., 1980, Thermal and Physical Properties of Liquids in the Metastable State, Atomizdat, Moscow.
51.
Spiegler
P.
,
Hopenfeld
J.
,
Silberberg
M.
,
Bumpus
C. F.
, and
Norman
A.
,
1963
, “
Onset of Stable Film Boiling and the Foam Limit
,”
Int. J. Heat Mass Transfer
, Vol.
6
, pp.
987
994
.
52.
Taylor
G. I.
,
1950
, “
The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Plane, I
,”
Proc. Royal Society of London
, Vol.
A201
, p.
192
192
.
53.
Testa
P.
, and
Nicotra
L.
,
1986
, “
Influence of Pressure on the Leidenfrost Temperature and on Extracted Heat Fluxes in the Transient Mode and Low Pressure
,
Transactions of the ASME
, Vol.
108
, pp.
916
921
.
54.
Unal
C.
,
Daw
V.
, and
Nelson
R. A.
,
1992
, “
Unifying the Controlling Mechanisms for the Critical Heat Flux and Quenching: The Ability of Liquid to Contact the Hot Surface
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
114
, pp.
972
982
.
55.
Xiong
T. Y.
, and
Yeun
M. C.
,
1990
, “
Evaporation of a Liquid Droplet on a Hot Plate
,”
Int. J. Heat Mass Trans.
, Vol.
34
, pp.
1881
1894
.
56.
Yao
S. C.
, and
Henry
R. E.
,
1978
, “
An Investigation of the Minimum Film Boiling Temperature on Horizontal Surfaces
,”
Transactions of the ASME
, Vol.
100
, pp.
263
266
.
57.
Yao
S. C.
, and
Cai
K. Y.
,
1988
, “
The Dynamics and Leidenfrost Temperature of Drops Impacting on a Hot Surface at Small Angles
,”
Exp. Thermal Fluid Sci.
, Vol.
1
, pp.
363
371
.
58.
Zuber, N., 1958, “On the Stability of Boiling Heat Transfer,” Transactions of the ASME, pp. 711–720.
This content is only available via PDF.
You do not currently have access to this content.