The flame structure and stability, as well as the vaporization rates of twin droplets exposed to a high-temperature, partially premixed flow are investigated in the present study. Two important parameters of the Reynolds number and ambient equivalence ratio are taken into consideration to account for the influence of fuel vapor in the upstream far field on those of burning mechanisms around the twin droplets. When increasing the ambient equivalence ratio, the chemical reactivity in the upstream can be classified into three types; weakly, moderately, and obviously reactive flows, according to the distribution of the vaporization rate of the leading droplet versus the Reynolds number. In particular, if the flow is moderately reactive, say, ϕ=0.2, a double-peak profile is observed in the vaporization rate of the leading droplet, and it clearly depicts that by increasing the Reynolds number the vaporization is sequentially dominated by the envelope flame, reactive flow, and convective flow. With regard to the trailing droplet, because of the multiple effects stemming from the leading droplet, the impact of the ambient equivalence ratio on the vaporization rate distribution is similar, except for in the purely oxidizing environment in which the twin droplets behave as a single droplet. As a whole, the evaluated results illustrate that the partially premixed flow is conducive to promoting the vaporization and aides the flame stability in a twin-droplet system, while some burning characteristics in a counterflow system can also be obtained in front of the leading droplet. [S0022-1481(00)01504-8]

1.
Yamaoka, I., and Tsuji, H., 1974, “The Structure of Rich Fuel-Air Flames in the Forward Stagnation Region of a Porous Cylinder,” Fifteenth Symposium (International) on Combustion, pp. 637–644.
2.
Yamaoka, I., and Tsuji, H., 1976, “Structure Analysis of Rich Fuel-Air Flames in the Forward Stagnation Region of a Porous Cylinder,” Sixteenth Symposium (International) on Combustion, pp. 1145–1154.
3.
Yamaoka, I., and Tsuji, H., 1978, “An Experimental Study of Flammability Limits Using Counterflow Flames,” Seventeenth Symposium (International) on Combustion, pp. 843–855.
4.
Peters, N., 1984, “Partially Premixed Diffusion Flamelets in Non-Premixed Turbulent Combustion,” Twentieth Symposium (International) on Combustion, pp. 353–360.
5.
Seshadri
,
K.
,
Puri
,
I.
, and
Peters
,
N.
,
1985
, “
Experimental and Theoretical Investigations of Partially Premixed Diffusion Flames at Extinction
,”
Combust. Flame
,
61
, pp.
237
249
.
6.
Hamins
,
A.
,
Thridandam
,
H.
, and
Seshadri
,
K.
,
1985
, “
Structure and Extinction of a Counterflow Partially Premixed, Diffusion Flame
,”
Chem. Eng. Sci.
,
40
, pp.
2027
2045
.
7.
Law
,
C. K.
,
Zhu
,
D. L.
,
Li
,
T. X.
,
Chung
,
S. H.
, and
Kim
,
J. S.
,
1989
, “
On the Structure and Extinction Dynamics of Partially-Premixed Flames: Theory and Experiment
,”
Combust. Sci. Technol.
,
64
, pp.
199
232
.
8.
Buckmaster, J., and Matalon, M., 1988, “Anomalous Lewis Number Effects in Tribrachial Flames,” Twenty-Second Symposium (International) on Combustion, pp. 1527–1535.
9.
Dold
,
J. W.
,
1989
, “
Flame Propagation in a Nonuniform Mixture: Analysis of a Slowly Varying Triple Flame
,”
Combust. Flame
,
76
, pp.
71
88
.
10.
Ruetsch
,
G. R.
,
Vervisch
,
L.
, and
Linan
,
A.
,
1995
, “
Effects of Heat Release on Triple Flames
,”
Phys. Fluids
,
7
, No.
6
, pp.
1447
1454
.
11.
Gore
,
J. P.
, and
Zhan
,
N. J.
,
1996
, “
NOx Emission and Major Species Concentrations in Partially Premixed Laminar Methane/Air Co-flow Jet Flames
,”
Combust. Flame
,
105
, pp.
414
427
.
12.
Shu
,
Z.
,
Aggarwal
,
S. K.
,
Katta
,
V. R.
, and
Puri
,
I. K.
,
1997
, “
A Numerical Investigation of the Flame Structure of an Unsteady Inverse Partially Premixed Flame
,”
Combust. Flame
,
111
, pp.
296
311
.
13.
Aggarwal
,
S. K.
, and
Puri
,
I. K.
,
1998
, “
Flame Structure Interactions and State Relationships in an Unsteady Partially Premixed Flame
,”
AIAA J.
,
36
, No.
7
, pp.
1190
1199
.
14.
Spalding, D. B., 1953, “The Combustion of Liquid Fuels,” Fourth Symposium (International) on Combustion, pp. 847–864.
15.
Gollahalli, S. R., and Brzustowski, T. A., 1973, “Experimental Studies on the Flame Structure in the Wake of a Burning Droplet,” Fourteenth Symposium (International) on Combustion, pp. 1333–1344.
16.
Gollahalli, S. R., and Brzustowski, T. A., 1975, “The Effect of Pressure on the Flame Structure in the Wake of a Burning Hydrocarbon Droplet,” Fifteenth Symposium (International) on Combustion, pp. 409–417.
17.
Gore
,
J. P.
,
Meng
,
W. H.
, and
Jang
,
J. H.
,
1990
, “
Droplet Flames in Reactive Environments
,”
Combust. Flame
,
82
, pp.
126
141
.
18.
Jiang
,
T. L.
,
Chen
,
W. H.
,
Tsai
,
M. J.
, and
Chiu
,
H. H.
,
1994
, “
Double Flame and Multiple Solution Computations for a Wetted Porous Sphere Vaporizing in Reactive Flows
,”
Combust. Sci. Technol.
,
102
, pp.
115
143
.
19.
Jiang
,
T. L.
,
Chen
,
W. H.
,
Tsai
,
M. J.
, and
Chiu
,
H. H.
,
1995
, “
A Numerical Investigations of Multiple Flame Configurations in Convective Droplet Gasification
,”
Combust. Flame
,
103
, pp.
221
238
.
20.
Chiu
,
H. H.
, and
Huang
,
J. S.
,
1996
, “
Multiple-State Phenomena and Hysteresis of a Combusting Isolated Droplet
,”
Atomization Sprays
,
6
, pp.
1
26
.
21.
Tsai, J. S., and Sterling, A. M., 1990, “The Combustion of Linear Droplet Arrays,” Twenty-Third Symposium (International) on Combustion, pp. 1405–1411.
22.
Tsai
,
J. S.
, and
Sterling
,
A. M.
,
1991
, “
The Combustion of a Linear Droplet Array in a Convective, Coaxial Potential Flow
,”
Combus. Flame
,
86
, pp.
189
202
.
23.
Chen, W. H., Liu, C. C., and Jiang, T. L., 1998, “Hysteresis Effects of Two Interactive Droplets Burning in Convective Flows,” Twenty-Seventh Symposium (International) on Combustion, pp. 1923–1932.
24.
Raju, M. S., and Sirignano, W. A., 1987, “Unsteady Navier-Stokes Solution for Two Interacting, Vaporizing Droplets,” AIAA 25th Aerospace Sciences Meeting, AIAA-87-0300.
25.
Raju
,
M. S.
, and
Sirignano
,
W. A.
,
1990
, “
Interaction Between Two Vaporizing Droplets in an Intermediate Reynolds Number Flow
,”
Phys. Fluids
,
2
, No.
10
, pp.
1780
1796
.
26.
Chen
,
W. H.
,
2000
, “
Combustion Hysteresis and Vaporization Interaction of Two Burning Droplets With Different Sizes
,”
Combust. Sci. Technol.
,
154
, pp.
229
257
.
27.
Chen
,
W. H.
, and
Jiang
,
T. L.
,
2000
, “
Double, Triple, and Tetra-Brachial Flame Structures Around a pair of Droplets in Tandem
,”
Combust. Sci. Technol.
,
151
, pp.
105
132
.
28.
Labowsky
,
M.
,
1978
, “
A Formalism for Calculating the Evaporation Rates of Rapidly Evaporting Interacting Particles
,”
Combust. Sci. Technol.
,
18
, pp.
145
151
.
29.
Labowsky
,
M.
,
1980
, “
Calculation of the Burning of Interacting Fuel Droplets
,”
Combust. Sci. Technol.
,
22
, pp.
217
226
.
30.
Chen, W. H., Liu, C. C., and Jiang, T. L., 1999, “Numerical Investigation of Droplet Vaporization and Combustion Models Spray Combustion,” 17th International Colloquium on the Dynamics of Explosions and Reactive Systems, July 25–30, Heidelberg, Germany.
31.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuel in Flames
,”
Combust. Sci. Technol.
,
27
, pp.
31
43
.
32.
Reid, R. C., Prausnitz, J. M., and Poling, B. E., 1985, The Properties of Gases and Liquids, McGraw-Hill, New York.
33.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C.
34.
Thompson, J. F., Warsi, Z. U., and Mastin, C. W., 1985, Numerical Grid Generation: Foundations and Applications, North-Holland, Amsterdam.
35.
Jiang
,
T. L.
,
Liu
,
C. C.
, and
Chen
,
W. H.
,
1994
, “
Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet
,”
Combust. Sci. Technol.
,
97
, pp.
271
301
.
36.
Patankar
,
S. V.
,
1981
, “
A Calculation Procedure for Two-Dimensional Elliptic Situations
,”
Numer. Heat Transfer
,
4
, pp.
409
425
.
You do not currently have access to this content.