The photoacoustic (PA) technique is one of many techniques for measuring thermal conductivity of thin films. Compared with other techniques for thermal conductivity measurement, the photoacoustic method is relatively simple, yet is able to provide accurate thermal conductivity data for many types of thin films and bulk materials. In this work, the PA measurement in a high frequency range is made possible by a newly developed PA apparatus, which extends the limit of the PA technique. Thermal conductivities of SiO2 with thicknesses from 0.05 to 0.5 μm on Si wafer, e-beam evaporated thin nickel film on Si wafer, and thermal barrier coatings are obtained. In addition to the commonly used phase shift fitting, which is only appropriate for thermally-thin films, an amplitude fitting method is developed and employed for measuring both thin films and bulk materials with smooth or rough surfaces. Comparing results by amplitude fitting to those obtained by other methods and reference values shows good agreements. Applications and limitations of the photoacoustic technique are discussed.

1.
Goodson
,
K. E.
, and
Flik
,
M. I.
,
1994
, “
Solid Layer Thermal-Conductivity Measurement Techniques
,”
Appl. Mech. Rev.
,
47
, pp.
101
112
.
2.
Mirmira
,
S. R.
, and
Fletcher
,
L. S.
,
1998
, “
Review of the Thermal Conductivity of Thin Films
,”
J. Thermophys. Heat Transfer
,
12
, pp.
121
131
.
3.
Vo¨lklein
,
F.
,
1990
, “
Thermal Conductivity and Diffusivity of a Thin Film SiO2-Si3N4 Sandwich System
,”
Thin Solid Films
,
188
, pp.
27
33
.
4.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement from 30 to 750 K: the 3ω Method
,”
Rev. Sci. Instrum.
,
61
, pp.
802
808
.
5.
Cahill
,
D. G.
, and
Allen
,
T. H.
,
1994
, “
Thermal Conductivity of Sputtered and Evaporated SiO2 and TiO2 Optical Coatings
,”
Appl. Phys. Lett.
,
65
, pp.
309
311
.
6.
Zhou, S. Q., Chen, G., Liu, J. L., Zheng, X. Y, and Wang, K. L., 1998, “Anisotropic Thermal Conductivity of Si/SiGe Superlattice,” Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, ASME, Fairfield, NJ, 361-4, pp. 249–254.
7.
Okuda
,
M.
, and
Ohkubo
,
S.
,
1992
, “
A Novel Method for Measuring the Thermal Conductivity of Submicrometer Thick Dielectric Films
,”
Thin Solid Films
,
213
, pp.
176
181
.
8.
Zhang, X., and Grigoropoulos, C. P., 1994, “The Amplitude Technique for Measurement of Free Standing Thin Film Thermal Properties: a Comparison with other Experimental Techniques,” Proceedings of the 1994 ASME International Mechanical Engineering Congress and Exposition, ASME, New York, NY, 293, pp. 17–24.
9.
Goodson
,
K. E.
,
Flik
,
M. I.
,
Su
,
L. T.
, and
Antoniadis
,
D. A.
,
1994
, “
Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers
,”
ASME J. Heat Transfer
,
116
, pp.
317
324
.
10.
Goodson
,
K. E.
,
Ka¨ding
,
O. W.
,
Ro¨sler
,
M.
, and
Zachai
,
R.
,
1995
, “
Experimental Investigation of Thermal Conduction Normal to Diamond-Silicon Boundaries
,”
J. Appl. Phys.
,
77
, pp.
1385
1392
.
11.
Wu
,
Z. L.
,
Reichling
,
M.
,
Hu
,
X. Q.
,
Balasubramanian
,
K.
, and
Guenther
,
K. H.
,
1993
, “
Absorption and Thermal Conductivity of Oxide Thin Films Measured by Photothermal Displacement and Reflectance Methods
,”
Appl. Opt.
,
32
, pp.
5660
5665
.
12.
Machlab
,
H.
,
McGahan
,
W. A.
, and
Woollam
,
J. A.
,
1992
, “
Thermal Diffusivity Measurements by Photothermal Laser Beam Deflection (PTD): Data Analysis Using the Levenberg-Marquardt Algorithm
,”
Thin Solid Films
,
215
, pp.
103
107
.
13.
Capinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Thermal Conductivity of GaAs/AlAs Superlattices
,”
Physica B
,
219
and 220, pp.
699
701
.
14.
Hostetler
,
J. L.
,
Smith
,
A. N.
, and
Norris
,
P. M.
,
1997
, “
Thin-Film Thermal Conductivity and Thickness Measurements Using Picosecond Ultrasonics
,”
Microscale Thermophys. Eng.
,
1
, pp.
237
244
.
15.
Tam
,
A. C.
,
1986
, “
Applications of Photoacoustic Sensing Techniques
,”
Rev. Mod. Phys.
,
58
, pp.
381
431
.
16.
Rosencwaig
,
A.
, and
Gersho
,
A.
,
1976
, “
Theory of the Photoacoustic Effect With Solids
,”
J. Appl. Phys.
,
47
, pp.
64
69
.
17.
Fujii
,
Y.
,
Moritani
,
A.
, and
Nakai
,
J.
,
1981
, “
Photoacoustic Spectroscopy Theory for Multi-Layered Samples and Interference Effect
,”
Jpn. J. Appl. Phys.
,
20
, pp.
361
367
.
18.
Baumann
,
J.
, and
Tilgner
,
R.
,
1985
, “
Determining Photothermally the Thickness of a Buried Layer
,”
J. Appl. Phys.
,
58
, pp.
1982
1985
.
19.
Cole, K. D., and McGahan, W. A., 1992, “Theory of Multilayers Heated by Laser Absorption,” Proceedings of Winter Annual Meeting of the American Society of Mechanical Engineering, ASME, New York, NY, 40, pp. 267–282.
20.
Lachaine
,
A.
, and
Poulet
,
P.
,
1984
, “
Photoacoustic Measurement of Thermal Properties of a Thin Polyester Film
,”
Appl. Phys. Lett.
,
45
, pp.
953
954
.
21.
Raman
,
S. S.
,
Nampoori
,
V. P. N.
,
Vallabhan
,
C. P. G.
,
Ambadas
,
G.
, and
Sugunan
,
S.
,
1995
, “
Photoacoustic Study of the Effect of Degassing Temperature on Thermal Diffusivity of Hydroxyl Loaded Alumina
,”
Appl. Phys. Lett.
,
67
, pp.
2939
2941
.
22.
Rohde
,
M.
,
1994
, “
Photoacoustic Characterization of Thermal Transport Properties in Thin Films and Microstructures
,”
Thin Solid Films
,
238
, pp.
199
206
.
23.
Hu
,
H.
,
Wang
,
X.
, and
Xu
,
X.
,
1999
, “
Generalized Theory of the Photoacoustic Effect with a Multilayer Material
,”
J. Appl. Phys.
,
86
, pp.
3953
3958
.
24.
Quimby
,
R. S.
, and
Yen
,
W. M.
,
1980
, “
On the Adequacy of One-Dimensional Treatments of the Photoacoustic Effect
,”
J. Appl. Phys.
,
51
, pp.
1252
1253
.
25.
Incropera, F. P., and DeWitt, D. P., 1990, Fundamentals of Heat and Mass Transfer, 3rd Ed., Wiley, New York, p. A13.
You do not currently have access to this content.