In this paper, the results of an experimental study of the time-resolved structure of a thermal boundary layer in a pulsating channel flow are presented. The developing laminar regime is investigated. Two techniques were used for time-resolved temperature measurements: a nonintrusive, pure-rotational CARS method and cold-wire anemometry. Results are presented for differing degrees of flow reversal, and the data show that the primary impact of reversed flow is an increase in the instantaneous thermal boundary-layer thickness and a period of decreased instantaneous Nusselt number. For the developing laminar parameter space spanned by the experiments, time-averaged heat-transfer enhancements as high as a factor of two relative to steady flow are observed for nonreversing and partially reversed pulsating flows. It is concluded that reversal is not necessarily a requirement for enhancement.

1.
Dec
,
J. E.
,
Keller
,
J. O.
, and
Arpaci
,
V. S.
,
1992
, “
Heat Transfer Enhancement in the Oscillating Turbulent Flow of a Pulsed Combustor Tail Pipe
,”
Int. J. Heat Mass Transf.
,
35
, No.
9
, pp.
2311
2325
.
2.
Niida
,
T.
,
Yoshida
,
T.
,
Yamashita
,
R.
, and
Nakayama
,
S.
,
1974
, “
The Influence of Pulsation on Laminar Heat Transfer in Pipes
,”
Heat Transfer-Jpn. Res.
,
3
, No.
3
, pp.
19
28
.
3.
Bayley, F. J., Edwards, P. A., and Singh, P. P., 1961, “The Effect of Flow Pulsations on Heat Transfer by Forced Convection from a Flat Plate,” Proceedings of the First International Heat Transfer Conference, Boulder, CO, pp. 499–509.
4.
Galitseyskiy
,
B. M.
,
Danilov
,
Y. I.
,
Dreyster
,
G. A.
,
Kalinin
,
E. K.
, and
Koshkin
,
V. N.
,
1969
, “
Effect of Resonant Fluctuations of Coolant Pressure on Convective Heat Transfer in Pipes
,”
Heat Transfer-Sov. Res.
,
1
, No.
2
, pp.
177
185
.
5.
Fujita
,
N.
, and
Tsubouchi
,
T.
,
1982
, “
An Experimental Study of Unsteady Heat Transfer from a Flat Plate to an Oscillating Air Flow
,”
Heat Transfer-Jpn. Res.
,
11
, pp.
31
43
.
6.
Miller
,
J. A.
,
1969
, “
Heat Transfer in the Oscillating Turbulent Boundary Layer
,”
J. Eng. Power
,
91
, pp.
239
244
.
7.
Feiler, C. E., 1964, “Experimental Heat-Transfer and Boundary-Layer Behavior with 100-CPS Oscillations,” NASA TN No. 2531, Washington, DC.
8.
Jackson
,
T. W.
, and
Purdy
,
K. R.
,
1965
, “
Resonant Pulsating Flow and Convective Heat Transfer
,”
ASME J. Heat Transfer
,
87
, pp.
507
512
.
9.
Hanby
,
V. I.
,
1969
, “
Convective Heat Transfer in a Gas-Fired Pulsating Combustor
,”
J. Eng. Power
,
91
, pp.
48
52
.
10.
Keil
,
R. H.
, and
Baird
,
M. H. I.
,
1971
, “
Enhancement of Heat Transfer by Flow Pulsation
,”
Ind. Eng. Chem. Process Des. Dev.
,
10
(
4
), pp.
473
478
.
11.
Feiler, C. E., and Yeager, E. B., 1962, “Effect of Large Amplitude Oscillations on Heat Transfer,” NASA TR R-142, Washington, DC.
12.
Dec
,
J. E.
, and
Keller
,
J. O.
,
1989
, “
Pulse Combustor Tail Pipe Heat Transfer Dependence on Frequency, Amplitude, and Mean Flow Rate
,”
Combust. Flame
,
77
, pp.
359
374
.
13.
Dec
,
J. E.
, and
Keller
,
J. O.
,
1990
, “
Time-Resolved Gas Temperatures in the Oscillating Turbulent Flow of a Pulse Combustor Tail Pipe
,”
Combust. Flame
,
80
, pp.
358
370
.
14.
Dec
,
J. E.
,
Keller
,
J. O.
, and
Hongo
,
I.
,
1991
, “
Time-Resolved Velocities and Turbulence in the Oscillating Flow of a Pulse Combustor Tail Pipe
,”
Combust. Flame
,
83
, pp.
271
292
.
15.
Despard
,
R. A.
, and
Miller
,
J. A.
,
1971
, “
Separation in Oscillating Laminar Boundary Layer Flows
,”
J. Fluid Mech.
,
47
, pp.
21
31
.
16.
Charnay
,
G.
, and
Mathieu
,
J.
,
1976
, “
Periodic Flow in a Wind Tunnel Produced by Rotating Shutters
,”
ASME J. Fluids Eng.
,
98
, pp.
278
283
.
17.
Simpson
,
R. L.
,
Sallas
,
J. J.
, and
Nasburg
,
R. E.
,
1978
, “
Tailoring the Wavefrom of a Periodic Flow With a Programmable Damper
,”
ASME J. Fluids Eng.
,
100
, pp.
287
290
.
18.
Morel
,
T.
,
1977
, “
Design of Two-Dimensinal Wind-Tunnel Contractions
,”
ASME J. Fluids Eng.
,
99
, No.
2
, pp.
371
378
.
19.
Swearingen
,
J. D.
, and
Blackwelder
,
R. F.
,
1987
, “
The Growth and Breakdown of Streamwise Vortices in the Presence of a Wall
,”
J. Fluid Mech.
,
182
, pp.
255
290
.
20.
Currie, I. G., 1993, Fundamental Mechanics of Fluids, 2nd ed., McGraw-Hill, New York.
21.
Stuart, J. T., 1963, “Unsteady Boundary Layers,” in Laminar Boundary Layers, L. Rosenhead, ed., Clarendon Press, Oxford, UK.
22.
Kearney
,
S. P.
,
Lucht
,
R. P.
, and
Jacobi
,
A. M.
,
1999
, “
Temperature Measurements in Convective Heat Transfer Flows Using Dual-Broadband, Pure-Rotational Coherent Anti-Stokes Raman Spectroscopy (CARS)
,”
Exp. Therm. Fluid Sci.
,
19
, pp.
13
26
.
23.
Kearney, S. P., 1999, “An Experimental Investigation of Thermal Boundary Layer Structure and Heat Transfer in Oscillating Flows Using CARS Spectroscopy and Cold-Wire Anemometry,” Ph.D. dissertation, The University of Illinois, Urbana, IL.
24.
Kro¨ll
,
S.
, and
Sandell
,
D.
,
1988
, “
Influence of Laser Mode Statistics on Noise in Nonlinear Optical Processes—Application to Single-Shot Broadband Coherent Anti-Stokes Raman Scattering Thermometry
,”
J. Opt. Soc. Am. B
,
5
, No.
9
, pp.
1910
1926
.
25.
Alde´n
,
M.
,
Bengtsson
,
P. E.
,
Edner
,
H.
,
Kro¨ll
,
S.
, and
Nilsson
,
D.
,
1989
, “
Rotational CARS: A Comparison of Different Techniques with Emphasis on Accuracy in Temperature Determination
,”
Appl. Opt.
,
28
, No.
15
, pp.
3206
3219
.
26.
Quintana
,
D. L.
,
Amitay
,
M.
,
Ortega
,
A.
, and
Wygnanski
,
I. J.
,
1997
, “
Heat Transfer in the Forced Laminar Wall Jet
,”
ASME J. Heat Transfer
,
119
, pp.
451
459
.
27.
Wroblewski
,
D. E.
, and
Eibeck
,
P. A.
,
1991
, “
A Frequency Response Compensation Technique for Cold Wires and Its Application to a Heat Flux Probe
,”
Exp. Therm. Fluid Sci.
,
4
, pp.
452
463
.
28.
Palmer, R. E., 1989, “The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information,” Report No. SAND89-8206, Sandia National Laboratories, Albuquerque, NM and Livermore, CA.
29.
Zhang, L. W., 1996, “A Numerical Study of Flow and Heat Transfer in Compact Heat Exchangers,” Ph.D. dissertation, The University of Illinois, Urbana, IL.
30.
Qiu, S., Simon, T. W., and Volino, R. J., 1995, “Evaluation of Local Wall Temperature, Heat Flux, and Convective Heat Transfer Coefficient from the Near Wall Temperature Profile,” ASME-HTD, 318, pp. 45–52.
31.
Volino
,
R. J.
, and
Simon
,
T. W.
,
1997
, “
Velocity and Temperature Profiles in Turbulent Boundary Layer Flows Experiencing Streamwise Pressure Gradients
,”
ASME J. Heat Transfer
,
119
, No.
3
, pp.
433
439
.
32.
Qiu, S., and Simon, T. W., 1994, “Measurements of Heat Transfer and Fluid Mechanics within an Oscillatory Flow in a Pipe,” ASME-HTD, 285, pp. 45–52.
33.
Bejan, A., 1995, Convection Heat Transfer, Wiley, New York.
34.
Hino
,
M.
,
Sawamoto
,
M.
, and
Takasu
,
S.
,
1976
, “
Experiments on Transition to Turbulence in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
75
, pp.
193
207
.
35.
Clamen
,
M.
, and
Minton
,
P.
,
1977
, “
An Experimental Investigation of Flow in an Oscillating Pipe
,”
J. Fluid Mech.
,
81
, pp.
421
431
.
36.
Akhavan
,
R.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
,
1991
, “
An Investigation of Transition to Turbulence in Bounded Oscillatory Stokes Flows: Part 1 Experiments
,”
J. Fluid Mech.
,
225
, pp.
395
422
.
37.
Verzicco
,
R.
, and
Vittori
,
G.
,
1996
, “
Direct Simulation of Transition in Stokes Boundary Layers
,”
Phys. Fluids
,
8
, pp.
1341
1343
.
38.
Shah, R. K., and Bhatti, M. S., 1988, “Laminar Heat Transfer in Wall Bounded Flows,” in Handbook of Single-Phase Convective Heat Transfer, R. K. Shah, S. Kakac, and M. Yenir, eds., McGraw-Hill, New York.
You do not currently have access to this content.