The effect of freestream turbulence with different vortical structures on the stagnation region heat transfer was experimentally studied. Reynolds numbers, based on leading edge diameter of the heat transfer model with a cylindrical leading edge, ranged from 67,750 to 142,250. Turbulence generating grids of parallel rods were placed at several positions upstream of the heat transfer model in orientations where the rods were perpendicular and parallel to the stagnation line. The turbulence intensity and ratio of integral length scale to leading edge diameter were in the range 3.93 to 11.78 percent and 0.07 to 0.70, respectively. The grids with rods perpendicular to the stagnation line, where the primary vortical structures are expected to be perpendicular to the stagnation line, result in higher heat transfer than those with rods parallel to the stagnation line. The measured heat transfer data and turbulence characteristics are compared with existing correlation models.

1.
Maciejewski
,
P. K.
, and
Moffat
,
R. J.
,
1992
, “
Heat Transfer with Very High Freestream Turbulence: Part I — Experimental Data; Part II — Analysis of Results
,”
ASME J. Heat Transfer
114
, pp.
827
839
.
2.
Larsson
,
J.
,
1997
, “
Turbine Blade Heat Transfer Calculations Using Two-equation Turbulence Models
,”
Proc. Instn. Mech. Engrs.
221
, Part A, pp.
253
262
.
3.
Guo
,
S. M.
,
Jones
,
T. V.
,
Lock
,
G. M.
, and
Dancer
,
S. N.
,
1998
, “
Computational Prediction of Heat Transfer to Gas Turbine Nozzle Guide Vanes with Roughened Surfaces
,”
ASME J. Turbomach.
120
, pp.
343
350
.
4.
Smith
,
M. C.
, and
Kuethe
,
A. M.
,
1966
, “
Effects of Turbulence on Laminar Skin Friction and Heat Transfer,
Phys. Fluids
9
, No.
12
, pp.
2337
2344
.
5.
Kestin
,
J.
, and
Wood
,
R. T.
,
1971
, “
The Influence of Turbulence on Mass Transfer from Cylinders
,”
ASME J. Heat Transfer
93C
, pp.
321
327
.
6.
Lowery
,
G. W.
, and
Vacon
,
R. I.
,
1975
, “
Effect of Turbulence on Heat Transfer from Heated Cylinders
,”
Int. J. Heat Mass Transf.
18
, No.
11
, pp.
1229
1242
.
7.
O’Brien, J. E., and VanFossen, G. J., 1985, “The Influence of Jet-Grid Turbulence on Heat Transfer from the Stagnation Region of a Cylinder in Crossflow,” ASME Paper 85-HT-58.
8.
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Ou
,
S.
,
1991
, “
Influence of High Mainstream Turbulence on Leading Edge Heat Transfer
,”
ASME J. Heat Transfer
113
, pp.
843
850
.
9.
Han
,
J. C.
,
Zhang
,
L.
, and
Ou
,
S.
,
1993
, “
Influence of Unsteady Wake on Heat Transfer Coefficients from a Gas Turbine Blade
,”
ASME J. Heat Transfer
115
, pp.
904
911
.
10.
Yeh, F. C., Hippensteele, S. A., VanFossen, G. J., Poinsatte, P. E., and Ameri, A., 1993, “
High Reynolds Number and Turbulence Effects on Aerodynamics and Heat Transfer in a Turbine Cascade,” AIAA-93-2252.
11.
Zhang
,
L.
, and
Han
,
J. C.
,
1994
, “
Influence of Mainstream Turbulence on Heat Transfer Coefficients from a Gas Turbine Blade
,”
ASME J. Heat Transfer
116
, pp.
896
903
.
12.
VanFossen
,
G. J.
,
Simoneau
,
R. J.
, and
Ching
,
C. Y.
,
1995
, “
Influence of Turbulence Parameters, Reynolds Number and Body Shape on Stagnation Region Heat Transfer
,”
ASME J. Heat Transfer
117
, pp.
597
603
.
13.
Ahmaed
,
G. R.
, and
Yovanovich
,
M. M.
,
1997
, “
Experimental Study of Forced Convection from Isothermal Circular and Square Cylinders and Toroids
,”
ASME J. Heat Transfer
119
, pp.
70
79
.
14.
Du
,
H.
,
Ekkad
,
S.
, and
Han
,
J. C.
,
1997
, “
Effect of Unsteady Wake with Trailing Edge Coolant Ejection on Detailed Heat Transfer Coefficient Distributions for a Gas Turbine Blade
,”
ASME J. Heat Transfer
119
,
242
248
.
15.
Johnston, J. P., 1974, “The Effects of Rotation on Boundary Layers in Turbomachine Rotors,” NASA SP 304.
16.
Lakshminarayana B., 1996, Fluid Dynamics and Heat Transfer of Turbomachinery, John Wiley & Sons, Inc., New York.
17.
Sutera
,
S. P.
,
Maeder
,
P. F.
, and
Kestin
,
J.
,
1963
, “
On the Sensitivity of Heat Transfer in the Stagnation-point Boundary Layer to Free-stream Vorticity
,”
J. Fluid Mech.
16
, part 3, pp.
497
520
.
18.
Sutera
,
S. P.
,
1965
, “
Vorticity Amplification in Stagnation-point Flow and its Effect on Heat Transfer
,”
J. Fluid Mech.
21
, part 3, pp.
513
534
.
19.
Morkovin, M. V., 1979 “On the Question of Instabilities Upstream of Cylindrical Bodies,” MASA CR-3231.
20.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
1
, pp.
3
17
.
21.
Yavuzkurt
,
S.
,
1984
, “
A Guide to Uncertainty Analysis of Hot-Wire Data
,”
ASME J. Fluids Eng.
106
, pp.
181
186
.
22.
Roach
,
P. E.
,
1987
, “
The generation of Nearly Isotropic Turbulence by Means of Grids
,”
Heat and Fluid Flow
,
8
, No.
2
, pp.
82
92
.
23.
Frossling, N., 1958, “Evaporating Heat Transfer and Velocity Distribution in Two-Dimensional and Rotationally Symmetric Laminar Boundary Layer Flow,” NACA TM-1432.
24.
Zdravkovich, M. M., 1997, Flow Around Circular Cylinders, Vol 1: Fundamentals, Oxford Science Publications, Oxford University Press; Oxford, United Kingdom.
25.
Wei
,
T.
, and
Smith
,
C. R.
,
1986
, “
Secondary Vortices in the Wake of Circular Cylinders
,”
J. Fluid Mech.
169
, pp.
513
513
.
26.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
28
, pp.
477
539
.
27.
Corke
,
T.
,
Krull
,
J. D.
, and
Ghassemi
,
M.
,
1992
, “
Three-dimensional Mode Resonance in Far Wake
,”
J. Fluid Mech.
239
, pp.
99
132
.
You do not currently have access to this content.