We review recent advances in experimental methods for high spatial-resolution and high time-resolution thermometry, and the application of these and related methods for measurements of thermal transport in low-dimensional structures. Scanning thermal microscopy (SThM) achieves lateral resolutions of 50 nm and a measurement bandwidth of 100 kHz; SThM has been used to characterize differences in energy dissipation in single-wall and multi-wall carbon nanotubes. Picosecond thermoreflectance enables ultrahigh time-resolution in thermal diffusion experiments and characterization of heat flow across interfaces between materials; the thermal conductance G of interfaces between dissimilar materials spans a relatively small range, 20<G<200 MW m2K1 near room temperature. Scanning thermoreflectance microscopy provides nanosecond time resolution and submicron lateral resolution needed for studies of heat transfer in microelectronic, optoelectronic and micromechanical systems. A fully-micromachined solid immersion lens has been demonstrated and achieves thermal-radiation imaging with lateral resolution at far below the diffraction limit, <2 μm. Microfabricated metal bridges using electrical resistance thermometry and joule heating give precise data for thermal conductivity of single crystal films, multilayer thin films, epitaxial superlattices, polycrystalline films, and interlayer dielectrics. The room temperature thermal conductivity of single crystal films of Si is strongly reduced for layer thickness below 100 nm. The through-thickness thermal conductivity of Si-Ge and GaAs-AlAs superlattices has recently been shown to be smaller than the conductivity of the corresponding alloy. The 3ω method has been recently extended to measurements of anisotropic conduction in polyimide and superlattices. Data for carbon nanotubes measured using micromachined and suspended heaters and thermometers indicate a conductivity near room temperature greater than diamond.

1.
Verhoeven
,
H.
,
Boettger
,
E.
,
Flo¨ter
,
A.
,
Reiss
,
H.
, and
Zachai
,
R.
,
1997
, “
Thermal Resistance and Electrical Insulation of Thin Low-Temperature-Deposited Diamond Films
,”
Diamond Relat. Mater.
,
6
, pp.
298
302
.
2.
Banerjee, K., Amerasekera, A., Dixit, G., Cheung, N., and Hu, C., 1997, “Characterization of Contact and Via Failure under Short Duration Hight Pulsed Current Stree,” Proc. International Reliability Physics Symposium, pp. 216–220.
3.
Cheung
,
N. K.
,
Nosu
,
K.
, and
Winzer
,
G.
,
1990
, “
Guest Editorial—Dense Wavelength Division Multiplexing Techniques for High Capacity and Multiple Access Communication Systems
,”
IEEE J. Sel. Areas Commun.
,
8
, pp.
945
947
.
4.
Margalit
,
N. M.
,
Babic
,
D. I.
,
Streubel
,
K.
,
Mirin
,
R. P.
,
Mars
,
D. E.
,
Bowers
,
J. E.
, and
Hu
,
E. L.
,
1996
, “
Laterally Oxidized Long Wavelength CW Vertical Cavity Lasers
,”
Appl. Phys. Lett.
,
69
, pp.
471
473
.
5.
Karim
,
A.
,
Bjorlin
,
S.
,
Piprek
,
J.
, and
Bowers
,
J. E.
,
2000
, “
Long-Wavelength Vertical Cavity Lasers and Amplifiers
,”
IEEE J. Sel. Top. Quantum Electron.
,
6
, pp.
1244
1253
.
6.
Towe
,
E.
,
Leheny
,
R. F.
, and
Yang
,
A.
,
2000
, “
A Historical Perspective of the Development of the Vertical-Cavity Surface Emitting Laser
,”
IEEE J. Sel. Top. Quantum Electron.
,
6
, pp.
1458
1464
.
7.
Fan
,
X. F.
,
Zeng
,
G. H.
,
LaBounty
,
C.
,
Bowers
,
J. E.
,
Croke
,
E.
,
Ahn
,
C. C.
,
Huxtable
,
S.
,
Majumdar
,
A.
, and
Shakouri
,
A.
,
2001
, “
SiGeC/Si Superlattice Coolers
,”
Appl. Phys. Lett.
,
78
, pp.
1580
1582
.
8.
Mahan
,
G.
,
Sales
,
B.
, and
Sharp
,
J.
,
1997
, “
Thermoelectric Materials: New Approaches to an Old Problem
,”
Phys. Today
,
50
, pp.
42
47
.
9.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
,
Sun
,
X.
,
Zhang
,
Z.
,
Cronin
,
S. B.
,
Koga
,
T.
,
Ying
,
J. Y.
, and
Chen
,
G.
,
1999
, “
The Promise of Low-Dimensional Thermoelectric Materials
,”
Microscale Thermophys. Eng.
,
3
, pp.
89
100
.
10.
Williams
,
C. C.
, and
Wickramasinghe
,
H. K.
,
1986
, “
Scanning Thermal Profiler
,”
Appl. Phys. Lett.
,
49
, pp.
1587
1589
.
11.
Williams, C. C., and Wickramasinghe, H. K., 1988, “Photothermal Imaging With Sub-100 nm Spatial Resolution,” in Optical Sciences, A. L. Schawlow, ed. Springer Series, pp. 364–369.
12.
Majumdar
,
A.
,
Carrejo
,
J. P.
, and
Lai
,
J.
,
1993
, “
Thermal Imaging Using the Atomic Force Microscope
,”
Appl. Phys. Lett.
,
62
, pp.
2501
2503
.
13.
Majumdar
,
A.
,
Lai
,
J.
,
Chandrachood
,
M.
,
Nakabeppu
,
O.
,
Wu
,
Y.
, and
Shi
,
Z.
,
1995
, “
Thermal Imaging by Atomic Force Microscopy Using Thermocouple Cantilever Probes
,”
Rev. Sci. Instrum.
,
66
, pp.
3584
3592
.
14.
Stopka
,
M.
,
Hadjiiski
,
L.
,
Oerterschulze
,
E.
, and
Kassing
,
R.
,
1995
, “
Surface Investigations by Scanning Thermal Microscopy
,”
J. Vac. Sci. Technol. B
,
13
, pp.
2153
2156
.
15.
Luo
,
K.
,
Shi
,
Z.
,
Lai
,
J.
, and
Majumdar
,
A.
,
1996
, “
Nanofabrication of Sensors on Cantilever Probe Tips for Scanning Multiprobe Microscopy
,”
Appl. Phys. Lett.
,
68
, pp.
325
327
.
16.
Oesterschulze
,
E.
,
Stopka
,
M.
,
Ackermann
,
L.
,
Scholz
,
W.
, and
Werner
,
S.
,
1996
, “
Thermal Imaging of Thin Films by Scanning Thermal Microscope
,”
J. Vac. Sci. Technol. B
,
14
, pp.
832
837
.
17.
Luo
,
K.
,
Shi
,
Z.
,
Varesi
,
J.
, and
Majumdar
,
A.
,
1997
, “
Sensor Nanofabrication, Performance, and Conduction Mechanisms in Scanning Thermal Microscopy
,”
J. Vac. Sci. Technol. B
,
15
, pp.
349
360
.
18.
Nakabeppu
,
O.
,
Igeta
,
M.
, and
Hijikata
,
K.
,
1997
, “
Experimental Study of Point Contact Transport Phenomena Using the Atomic Force Microscope
,”
Microscale Thermophys. Eng.
,
1
, pp.
201
213
.
19.
Mills
,
G.
,
Zhou
,
H.
,
Midha
,
A.
,
Donaldson
,
L.
, and
Weaver
,
J. M. R.
,
1998
, “
Scanning Thermal Microscopy Using Batch Fabricated Thermocouple Probe
,”
Appl. Phys. Lett.
,
72
, pp.
2900
2902
.
20.
Nonnenmacher
,
M.
, and
Wickramasinghe
,
H. K.
,
1992
, “
Scanning Probe Microscopy of Thermal Conductivity and Substrate Properties
,”
Appl. Phys. Lett.
,
61
, pp.
168
170
.
21.
Pylkki
,
R. J.
,
Moyer
,
P. J.
, and
West
,
P. E.
,
1994
, “
Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy
,”
Jpn. J. Appl. Phys., Part 1
,
33
, pp.
3785
3790
.
22.
Maywald
,
M.
,
Pylkki
,
R. J.
, and
Balk
,
L. J.
,
1994
, “
Imaging of Local Thermal and Electrical Conductivity With Scanning Force Microscopy
,”
Scanning Microsc.
,
8
, pp.
181
188
.
23.
Hammiche
,
A.
,
Hourston
,
D. J.
,
Pollock
,
H. M.
,
Reading
,
M.
, and
Song
,
M.
,
1996
, “
Scanning Thermal Microscopy: Sub-Surface Imaging, Thermal Mapping of Polymer Blends, and Localized Calorimetry
,”
J. Vac. Sci. Technol. B
,
14
, pp.
1486
1491
.
24.
Hammiche
,
A.
,
Reading
,
M.
,
Pollock
,
H. M.
,
Song
,
M.
, and
Hourston
,
D. J.
,
1996
, “
Localized Thermal Analysis Using a Miniaturized Resistive Probe
,”
Rev. Sci. Instrum.
,
67
, pp.
4268
4273
.
25.
Nakabeppu
,
O.
,
Chandrachood
,
M.
,
Wu
,
Y.
,
Lai
,
J.
, and
Majumdar
,
A.
,
1995
, “
Scanning Thermal Imaging Microscopy Using Composite Cantilever Probes
,”
Appl. Phys. Lett.
,
66
, pp.
694
696
.
26.
Varesi
,
J.
, and
Majumdar
,
A.
,
1998
, “
Scanning Joule Expansion Microscopy at Nanometer Scales
,”
Appl. Phys. Lett.
,
72
, pp.
37
39
.
27.
Majumdar
,
A.
, and
Varesi
,
J.
,
1998
, “
Nanoscale Temperature Distributions Measured by Scanning Joule Expansion Microscopy
,”
ASME J. Heat Transfer
,
120
, pp.
297
305
.
28.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
Ch.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
, pp.
930
933
.
29.
Lai
,
J.
,
Chandracood
,
M.
,
Majumdar
,
A.
, and
Carrejo
,
J. P.
,
1995
, “
Thermal Detection of Device Failure by Atomic Force Microscopy
,”
IEEE Electron Device Lett.
,
16
, pp.
312
315
.
30.
Luo
,
K.
,
Herrick
,
R. W.
,
Majumdar
,
A.
, and
Petroff
,
P.
,
1997
, “
Scanning Thermal Microscopy of a Vertical Cavity Surface Emitting Laser
,”
Appl. Phys. Lett.
,
71
, pp.
1604
1606
.
31.
Ruiz
,
F.
,
Sun
,
W. D.
,
Pollak
,
F. H.
, and
Venkatraman
,
C.
,
1998
, “
Determination of Thermal Conductivity of Diamond-Like Nanocomposite Films Using a Scanning Thermal Microscope
,”
Appl. Phys. Lett.
,
73
, pp.
1802
1804
.
32.
Majumdar
,
A.
,
1999
, “
Scanning Thermal Microscopy
,”
Annu. Rev. Mater. Sci.
,
29
, pp.
505
585
.
33.
Shi, L., 2001, “Mesoscopic Thermophysical Measurements of Microstructures and Carbon Nanotubes,” Ph.D. thesis, Dept. of Mechanical Engineering, UC Berkeley.
34.
Shi
,
L.
,
Kwon
,
O.
,
Miner
,
A. C.
, and
Majumdar
,
A.
,
2001
, “
Design and Fabrication of Probes for Sub-100 nm Scanning Thermal Microscopy
,”
J. of MEMS
,
10
, pp.
370
378
.
35.
Shi, L., and Majumdar, A., “Thermal Transport Mechanisms at Nanoscale Point Contacts,” ASME J. Heat Transfer (in press).
36.
Kwon, O., 2001, “Thermal Design, Fabrication, and Imaging of MEMS and Microelectronic Structures,” Ph.D. dissertation, Dept. of Mechanical Engineering, U.C. Berkeley.
37.
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P., 1996, Science of Fullerenes and Carbon Nanotubes, Academic Press, New York.
38.
Shi
,
L.
,
Plyasunov
,
S.
,
Bachtold
,
A.
,
McEuen
,
P.
, and
Majumdar
,
A.
,
2000
, “
Scanning Thermal Microscopy of Carbon Nanotubes Using Batch Fabricated Probes
,”
Appl. Phys. Lett.
,
77
, pp.
4295
4297
.
39.
Yao
,
Z.
,
Kane
,
C. L.
, and
Dekker
,
C.
,
2000
, “
High-Field Electric Transport in Single-Wall Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
, pp.
2941
2944
.
40.
Phelan
,
P. E.
,
Nakabeppu
,
O.
,
Ito
,
K.
,
Hijikata
,
K.
,
Ohmori
,
T.
, and
Torikoshi
,
K.
,
1993
, “
Heat Transfer and Thermoelectric Voltage at Metallic Point Contacts
,”
ASME J. Heat Transfer
,
115
, pp.
757
762
.
41.
Loomis
,
J. J.
, and
Maris
,
H. J.
,
1994
, “
Theory of Heat Transfer by Evanescent Electromagnetic Waves
,”
Phys. Rev. B
,
50
, pp.
18517
18524
.
42.
Xu
,
J. B.
,
Lu¨ger
,
K.
,
Mo¨ller
,
R.
,
Dransfeld
,
K.
, and
Wilson
,
I. H.
,
1994
, “
Heat Transfer Between Two Metallic Surface at Small Distances
,”
J. Appl. Phys.
,
76
, pp.
7209
7216
.
43.
Mulet
,
J. P.
,
Joulian
,
K.
,
Carminati
,
R.
, and
Greffet
,
J. J.
,
2001
, “
Nanoscale Radiative Heat Transfer Between a Small Particle and a Plane Surface
,”
Appl. Phys. Lett.
,
78
, pp.
2931
2933
.
44.
Leinhos
,
T.
,
Stopka
,
M.
, and
Oesterschulze
,
E.
,
1998
, “
Micromachined Fabrication of Si Cantilevers With Schottky Diodes Integrated in the Tip
,”
Appl. Phys. A: Solids Surf.
,
66
, pp.
S65–S69
S65–S69
.
45.
Mihalcea
,
C.
,
Vollkopf
,
A.
, and
Oesterschulze
,
E.
,
2000
, “
Reproducible Large-Area Microfabrication of Sub-100 nm Apertures on Hollow Tips
,”
J. Electrochem. Soc.
,
147
, pp.
1970
1972
.
46.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
,
1993
, “
Thermoelectric Figure of Merit of a One-Dimensional conductor
,”
Phys. Rev. B
,
47
, pp.
16631
16634
.
47.
Paddock
,
C. A.
, and
Eesley
,
G. L.
,
1986
, “
Transient Thermoreflectance From Thin Metal Films
,”
J. Appl. Phys.
,
60
, pp.
285
290
.
48.
Ka¨ding
,
O. W.
,
Skurk
,
H.
, and
Goodson
,
K. E.
,
1994
, “
Thermal Conductance in Metallized Silicon-Dioxide Layers on Silicon
,”
Appl. Phys. Lett.
,
65
, pp.
1629
1631
.
49.
Lee
,
S.-M.
, and
Cahill
,
D. G.
,
1997
, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
, pp.
2590
2595
.
50.
Hostetler
,
J. L.
,
Smith
,
A. N.
,
Czajkowsky
,
D. M.
, and
Norris
,
P. M.
,
1999
, “
Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al
,”
Appl. Opt.
,
38
, pp.
3614
3620
.
51.
Clemens
,
B. M.
,
Eesley
,
G. L.
, and
Paddock
,
C. A.
,
1988
, “
Time-Resolved Thermal Transport in Compositionally Modulated Metal Films
,”
Phys. Rev. B
,
37
, pp.
1085
1096
.
52.
Stoner
,
R. J.
, and
Maris
,
H. J.
,
1993
, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
,
48
, pp.
16373
16387
.
53.
Taketoshi
,
N.
,
Baba
,
T.
, and
Ono
,
A.
,
1999
, “
Observation of Heat Diffusion Across Submicrometer Metal Thin Films Using a Picosecond Thermoreflectance Technique
,”
Jpn. J. Appl. Phys., Part 2
,
38
, pp.
1268
1271
.
54.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Ruf
,
T.
,
Cardona
,
M.
,
Ploog
,
K.
, and
Katzer
,
D. S.
,
1999
, “
Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique
,”
Phys. Rev. B
,
59
, pp.
8105
8113
.
55.
Smith
,
A. N.
,
Hostetler
,
J. L.
, and
Norris
,
P. M.
,
2000
, “
Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique
,”
Microscale Thermophys. Eng.
,
4
, pp.
51
60
.
56.
Capinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Improved Apparatus for Picosecond Pump-and-Probe Optical Measurements
,”
Rev. Sci. Instrum.
,
67
, pp.
2720
2726
.
57.
Bonello
,
B.
,
Perrin
,
B.
, and
Rossignol
,
C.
,
1998
, “
Photothermal Properties of Bulk and Layered Materials by the Picosecond Acoustics Technique
,”
J. Appl. Phys.
,
83
, pp.
3081
3088
.
58.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, New York, pp. 109–112.
59.
Chen
,
G.
, and
Tien
,
C. L.
,
1993
, “
Internal Reflection Effects on Transient Photothermal Reflectance
,”
J. Appl. Phys.
,
73
, pp.
3461
3466
.
60.
Mertin
,
W.
,
1996
, “
New Aspects in Electro-Optic Sampling
,”
Microelectron. Eng.
,
31
, pp.
365
376
.
61.
Sheridan
,
J. A.
,
Bloom
,
D. M.
, and
Solomon
,
P. M.
,
1995
, “
System for Direct Measurement of the Step Response of Electronic Devices on the Picosecond Time-Scale
,”
Opt. Lett.
,
20
, pp.
584
586
.
62.
Ju, Y. S., and Goodson, K. E., 1999, Microscale Heat Conduction in Integrated Circuits and Their Constituent Films, chap. 2, Kluwer Academic Publishers, Norwell, MA.
63.
Brugger
,
H.
, and
Epperlein
,
P. W.
,
1990
, “
Mapping of Local Temperatures on Mirrors of GaAs/AlGaAs Laser Diodes
,”
Appl. Phys. Lett.
,
56
, pp.
1049
1051
.
64.
Ostermeier
,
R.
,
Brunner
,
K.
,
Abstreiter
,
G.
, and
Weber
,
W.
,
1992
, “
Temperature Distribution in Si-MOSFET’s Studied by Micro-Ramn Spectroscopy
,”
IEEE Trans. Electron Devices
,
39
, pp.
858
863
.
65.
Iwata
,
K.
, and
Hamaguchi
,
H.
,
1997
, “
Microscopic Mechanism of Solute-Solvent Energy Dissipation Probed by Picosecond Time-Resolved Raman Spectroscopy
,”
J. Phys. Chem.
,
101
, No.
4
, pp.
632
637
.
66.
Martin
,
Y.
, and
Wickramsinghe
,
H. K.
,
1987
, “
Study of Dynamic Current Distribution in Logic Circuits by Joule Expansion Microscopy
,”
Appl. Phys. Lett.
,
50
, pp.
167
168
.
67.
Donnelly
,
V. M.
,
1993
, “
Extension of Infrared-Laser Interferometric Thermometry to Silicon-Wafers Polished on Only One Side
,”
Appl. Phys. Lett.
,
63
, No.
10
, pp.
1396
1396
.
68.
Glanner
,
G. J.
,
Sitter
,
H.
,
Faschinger
,
W.
, and
Herman
,
M. A.
,
1994
, “
Evaluation of Growth Temperature, Refractive-Index, and Layer Thickness of Thin znte, mnte, and cdte-films by in-situ Visible Laser Interferometry
,”
Appl. Phys. Lett.
,
65
, No.
8
, pp.
998
1000
.
69.
Hall
,
D. C.
,
Goldberg
,
L.
, and
Mehuys
,
D.
,
1992
, “
Technique for Lateral Temperature Profiling in Optoelectronic Devices Using a Photoluminescence Microscope
,”
Appl. Phys. Lett.
,
61
, pp.
384
386
.
70.
Kolodner
,
P.
, and
Tyson
,
J. A.
,
1982
, “
Microscopic Fluorescent Imaging of Surface Temperature Profiles with 0.01 C Resolution
,”
Appl. Phys. Lett.
,
40
, pp.
782
784
.
71.
Cardona, M., 1969, “Modulation Spectroscopy,” in Solid State Physics, Suppl. 11, F. Seitz, D. Turnbull, and H. Ehrenreich, eds., Acadmic Press, New York.
72.
Claeys
,
W.
,
Dilhaire
,
S.
,
Quintard
,
V.
,
Dom
,
J. P.
, and
Danto
,
Y.
,
1993
, “
Thermoreflectance Optical Test Probe for the Measurement of Current-Induced Temperature Change in Microelectronic Components
,”
Reliability Engineering International
,
9
, pp.
303
308
.
73.
Mansanares
,
A. M.
,
Roger
,
J. P.
,
Fournier
,
D.
, and
Boccara
,
A. C.
,
1994
, “
Temperature Field Determination of InGaAsP/InP Lasers by Photothermal Microscopy: Evidence for Weak Nonradiative Process at the Facets
,”
Appl. Phys. Lett.
,
64
, pp.
4
6
.
74.
Epperlein
,
P.-W.
,
1993
, “
Micro-Temperature Measurements on Semiconductor Laser Mirrors by Reflectance Modulation: A Newly Developed Technique for Laser Characterization
,”
Jpn. J. Appl. Phys., Part 1
,
32
, pp.
5514
5522
.
75.
Abid
,
R.
,
Miserey
,
F.
, and
Mezroua
,
F.-Z.
,
1996
, “
Effet de la temperature sur la Reflectivite du Silicium Oxyde: Determination Experimentale de la Sensibilite Relative; Application a la Mesure sans Contact de la Temperature a la Surface d’un Thyristor GTO en Commutation
,”
Journal de Physics III
,
6
, pp.
279
300
.
76.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1998
, “
Short-Time-Scale Thermal Mapping of Microdevices using a Scanning Thermoreflectance Technique
,”
ASME J. Heat Transfer
,
120
, pp.
306
313
.
77.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1997
, “
Thermal Mapping of Interconnects Subjected to Brief Electrical Stresses
,”
IEEE Electron Device Lett.
,
18
, pp.
512
514
.
78.
Decker, D. L., and Hodgkin, V. A., 1981, “Wavelength and Temperature Dependence of the Absolute Reflectance of Metals at Visible and Infrared Wavelengths,” in National Bureau of Standards Special Publication, NBS-SP-620, Washington, D.C.
79.
Rosei
,
R.
, and
Lynch
,
D. W.
,
1972
, “
Thermomodulation Spectra of Al, Au, and Cu
,”
Phys. Rev. B
,
5
, pp.
3883
3893
.
80.
Betzig
,
E.
, and
Trautman
,
J. K.
,
1992
, “
Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit
,”
Science
,
257
, pp.
189
195
.
81.
Boudreau
,
B. D.
,
Raja
,
J.
,
Hocken
,
R. J.
,
Patterson
,
S. R.
, and
Patten
,
J.
,
1997
, “
Thermal Imaging With Near-Field Microscopy
,”
Rev. Sci. Instrum.
,
68
, pp.
3096
3098
.
82.
Goodson
,
K. E.
, and
Asheghi
,
M.
,
1997
, “
Near-Field Optical Thermometry
,”
Microscale Thermophys. Eng.
,
1
, pp.
225
235
.
83.
Bethe
,
H. A.
,
1944
, “
Theory of Diffraction by Small Holes
,”
The Physical Review
,
66
, pp.
163
182
.
84.
Mansfield
,
S. M.
, and
Kino
,
G. S.
,
1990
, “
Solid Immersion Microscope
,”
Appl. Phys. Lett.
,
57
, pp.
2615
2616
.
85.
Terris
,
B. D.
,
Mamin
,
H. J.
,
Rugar
,
D.
,
Studenmund
,
W. R.
, and
Kino
,
G. S.
,
1994
, “
Near-Field Optical-Data Storage Using a Solid Immersion Lens
,”
Appl. Phys. Lett.
,
65
, pp.
388
390
.
86.
Ghislain
,
L. P.
,
Elings
,
V. B.
,
Crozier
,
K. B.
,
Manalis
,
S. R.
,
Minne
,
S. C.
,
Wilder
,
K.
,
Kino
,
G. S.
, and
Quate
,
C. F.
,
1999
, “
Near-Field Photolithography with a Solid Immersion Lens
,”
Appl. Phys. Lett.
,
74
, pp.
501
503
.
87.
Fletcher
,
D. A.
,
Crozier
,
K. B.
,
Quate
,
C. F.
,
Kino
,
G. S.
,
Goodson
,
K. E.
,
Simanovskii
,
D.
, and
Palanker
,
D. V.
,
2000
, “
Near-Field Infrared Imaging with a Microfabricated Solid Immersion Lens
,”
Appl. Phys. Lett.
,
77
, pp.
2109
2111
.
88.
Fletcher, D. A., 2001, “Near-Field Microscopy with a Microfabricated Solid Immersion Lens,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
89.
Goodson, K. E., and Ju, Y. S., 1999, “Heat Conduction in Novel Electronic Films,” Annual Review of Materials Science, E. N. Kaufmann et al., eds., Annual Reviews, Palo Alto, CA, Vol. 29, pp. 261–293.
90.
Cahill
,
D. G.
,
1997
, “
Heat Transport in Dielectric Thin-Films and at Solid-Solid Interfaces
,”
Microscale Thermophys. Eng.
,
1
, pp.
85
109
.
91.
Chen
,
G.
, and
Neagu
,
M.
,
1997
, “
Thermal Conductivity and Heat Transfer in Superlattices
,”
Appl. Phys. Lett.
,
71
, pp.
2761
2763
.
92.
Hyldgaard
,
P.
, and
Mahan
,
G. D.
,
1997
, “
Phonon Superlattice Transport
,”
Phys. Rev. B
,
57
, pp.
14958
14973
.
93.
Chen
,
G.
,
1998
, “
Thermal-Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
, pp.
14958
14973
.
94.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
, pp.
605
668
.
95.
Graebner
,
J. E.
,
1993
, “
Thermal Conductivity of CVD Diamond: Techniques and Results
,”
Diamond Films Technol.
,
3
, pp.
77
130
.
96.
Touzelbaev
,
M. N.
, and
Goodson
,
K. E.
,
1998
, “
Applications of Micron-Scale Diamond Layers for the IC and MEMS Industries
,”
Diamond Relat. Mater.
,
7
, pp.
1
14
.
97.
Kurabayashi
,
K.
,
Asheghi
,
M.
,
Touzelbaev
,
M. N.
, and
Goodson
,
K. E.
,
1999
, “
Measurement of the Thermal Conductivity Anisotropy in Polyimide Films
,”
J. Microelectromech. Syst.
,
8
, pp.
180
191
.
98.
Bauer
,
S.
, and
Dereggi
,
A. S.
,
1996
, “
Pulsed Electrothermal Technique for Measuring the Thermal-Diffusivity of Dielectric Films on Conducting Substrates
,”
J. Appl. Phys.
,
80
, pp.
6124
6128
.
99.
Rogers
,
J. A.
,
Yang
,
Y.
, and
Nelson
,
K. A.
,
1994
, “
Elastic-Modulus and In-Plane Thermal Diffusivity Measurements in Thin Polyimide Films Using Symmetry-Selective Real-Time Impulsive Stimulated Thermal Scattering
,”
Appl. Phys. A: Solids Surf.
,
58
, pp.
523
534
.
100.
Goodson
,
K. E.
, and
Flik
,
M. I.
,
1994
, “
Solid-Layer Thermal Conductivity Measurement Techniques
,”
Appl. Mech. Rev.
,
47
, pp.
101
112
.
101.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement from 30-K to 750-K: The 3-Omega Method
,”
Rev. Sci. Instrum.
,
61
, pp.
802
808
.
102.
Cahill
,
D. G.
, and
Allen
,
T. H.
,
1994
, “
Thermal-Conductivity of Sputtered and Evaporated Sio2 and Tio2 Optical Coatings
,”
Appl. Phys. Lett.
,
65
, pp.
309
311
.
103.
Lee
,
S. M.
, and
Cahill
,
D. G.
,
1997
, “
Heat-Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
, pp.
2590
2595
.
104.
BorcaTasciuc
,
T.
,
Liu
,
W. L.
,
Liu
,
J. L.
,
Zeng
,
T. F.
,
Song
,
D. W.
,
Moore
,
C. D.
,
Chen
,
G.
,
Wang
,
K. L.
,
Goorsky
,
M. S.
,
Radetic
,
T.
,
Gronsky
,
R.
,
Koga
,
T.
, and
Dresselhaus
,
M. S.
,
2000
, “
Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices
,”
Superlattices Microstruct.
,
28
, pp.
199
206
.
105.
Ju
,
Y. S.
,
Kurabayashi
,
K.
, and
Goodson
,
K. E.
,
1999
, “
Thermal Characterization of Anisotropic Thin Fielectric Films using Harmonic Joule Heating
,”
Thin Solid Films
,
339
, pp.
160
164
.
106.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films of Thickness below 100 nm
,”
Appl. Phys. Lett.
,
74
, pp.
3005
3007
.
107.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Process-Dependent Thermal Transport Properties of Silicon Dioxide Films Deposited Using Low-Pressure Chemical Vapor Deposited
,”
J. Appl. Phys.
,
85
, pp.
7130
7134
.
108.
Goodson
,
K. E.
,
Flik
,
M. I.
,
Su
,
L. T.
, and
Antoniadis
,
D. A.
,
1994
, “
Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers
,”
ASME J. Heat Transfer
,
116
, pp.
317
324
.
109.
Tai
,
Y. C.
,
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
,
1988
, “
Thermal-Conductivity of Heavily Doped Low-Pressure Chemical Vapor-Deposited Polycrystalline Silicon Films
,”
J. Appl. Phys.
,
63
, pp.
1442
1447
.
110.
Paul
,
O. M.
,
Korvink
,
J.
, and
Baltes
,
H.
,
1994
, “
Determination of the Thermal-Conductivity of Cmos IC Polysilicon
,”
Sens. Actuators A
,
41
, pp.
161
164
.
111.
Kaeding
,
O. W.
,
Skurk
,
H.
, and
Goodson
,
K. E.
,
1993
, “
Thermal Conduction in Metallized Silicon-Dioxide Layers on Silicon
,”
Appl. Phys. Lett.
,
65
, pp.
1629
1631
.
112.
Goodson
,
K. E.
,
Kaeding
,
O. W.
,
Roesler
,
M.
, and
Zachai
,
M.
,
1995
, “
Experimental Investigation of Thermal Conduction normal to Diamond-Silicon Boundaries
,”
J. Appl. Phys.
,
77
, pp.
1385
1392
.
113.
Kading
,
O. W.
,
Skurk
,
H.
,
Maznev
,
A. A.
, and
Matthias
,
E.
,
1995
, “
Transient Thermal Gratings at Surfaces for Thermal Characterization of Bulk Materials and Thin-Films
,”
Appl. Phys. A: Mater. Sci. Process.
,
61
, pp.
253
261
.
114.
Special Issue of IEEE Transactions on Electron Devices, 1998, Vol. 45.
115.
Davis
,
J. A.
,
Venkatesan
,
R.
,
Kaloyeros
,
A.
,
Beylansky
,
M.
,
Souri
,
S. J.
,
Banerjee
,
K.
,
Saraswat
,
K. C.
,
Rahman
,
A.
,
Reif
,
R.
, and
Meindl
,
J. D.
,
2001
, “
Interconnect Limits on Gigascale Integration (GSI) in the 21st Century
,”
Proc. IEEE
,
89
, pp.
305
324
.
116.
King
,
W. P.
,
Kenny
,
T. W.
,
Goodson
,
K. E.
,
Cross
,
G.
,
Despont
,
M.
,
Durig
,
U.
,
Rothuizen
,
H.
,
Binnig
,
G. K.
, and
Vettiger
,
P.
,
2001
, “
Atomic Force Microscope Cantilevers for Combined Thermomechanical Data Writing and Reading
,”
Appl. Phys. Lett.
,
78
, pp.
1300
1302
.
117.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
, pp.
2461
2471
.
118.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
,
1998
, “
Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
ASME J. Heat Transfer
,
120
, pp.
30
36
.
119.
Asheghi, M., Kurabayashi, K., Goodson, K. E., Kasnavi, R., and Plummer, J. D., 1999, “Thermal Conduction in Doped Silicon Layers,” Proc. 33rd ASME/AIChE National Heat Transfer Conference, Albuquerque, NM, August 8–14.
120.
Uher
,
C.
,
1990
, “
Thermal Conductivity of High-Tc Superconductors
,”
J. Supercond.
,
3
, pp.
337
389
.
121.
Richardson
,
R. A.
,
Peacor
,
S. D.
,
Uher
,
C.
, and
Nori
,
F.
,
1992
, “
YBa2Cu3O7−δ Films: Calculation of the Thermal Conductivity and Phonon Mean Free Path
,”
J. Appl. Phys.
,
72
, pp.
4788
4791
.
122.
Goodson
,
K. E.
, and
Flik
,
M. I.
,
1993
, “
Electron and Phonon Thermal Conduction in Epitaxial High-Tc Superconducting Films
,”
ASME J. Heat Transfer
,
115
, pp.
17
25
.
123.
Chen, G., 1996, “Heat Transfer in Micro and Nanoscale Photonic Devices,” in Tien, C.-L., editor, Annual Review of Heat Transfer, pp. 1–57. Begell House, New York.
124.
Mahan
,
G. D.
, and
Woods
,
L. M.
,
1998
, “
Multilayer Thermionic Refrigeration
,”
Phys. Rev. Lett.
,
80
, pp.
4016
4019
.
125.
Mahan, G. D., 1998, “Good Thermoelectrics,” in H. Ehrenreich and F. Spaepen, ed., Solid State Physics, Vol. 51, Academic Press, New York, pp. 81–157.
126.
Cahill
,
D. G.
,
Bullen
,
A.
, and
Lee
,
S.-M.
,
2000
, “
Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films
,”
High Temperatures High Pressures
,
32
, pp.
135
142
.
127.
Cahill, D. G., 1998, “Heat Transport in Dielectric Thin Films and at Solid-Solid Interfaces,” in C.-L. Tien, A. Majumdar, and F. M. Gerner, eds., Microscale Energy Transport, Taylor & Francis, Washington, DC, pp. 95–117.
128.
Young
,
D. A.
, and
Maris
,
H. J.
,
1989
, “
Lattice-Dynamical Calculations of the Kapitza Resistance Between FCC Lattices
,”
Phys. Rev. B
,
40
, pp.
3685
3693
.
129.
Pettersson
,
S.
, and
Mahan
,
G. D.
,
1990
, “
Theory of the Thermal Boundary Resistance Between Dissimilar Lattices
,”
Phys. Rev. B
,
42
, pp.
7386
7390
.
130.
Sergeev
,
A. V.
,
1998
, “
Electronic Kapitza Conductance Due to Inelastic Electron-Boundary Scattering
,”
Phys. Rev. B
,
58
, pp.
10199
10202
.
131.
Kechrakos
,
D.
,
1991
, “
The Role of Interface Disorder in the Thermal Boundary Conductivity Between Two Crystals
,”
J. Phys.: Condens. Matter
,
3
, pp.
1443
1452
.
132.
Streib
,
H. M.
, and
Mahler
,
G.
,
1987
, “
Lattice Theory of Ideal Hetero Structures: Influence of Interface Models on Phonon Propagation
,”
Z. Phys. B-Condensed Matter
,
65
, pp.
483
490
.
133.
Kim
,
E.-K.
,
Kwun
,
S.-I.
,
Lee
,
S.-M.
,
Seo
,
H.
, and
Yoon
,
J.-G.
,
2000
, “
Thermal Boundary Resistance at Ge2Sb2Te5/ZnS:SiO2 Interface
,”
Appl. Phys. Lett.
,
76
, pp.
3864
3866
.
134.
Cahill
,
D. G.
, and
Lee
,
S.-M.
,
1997
, “
Influence of Interface Conductance on the Apparent Thermal Conductivity of Thin Films
,”
Microscale Thermophys. Eng.
,
1
, pp.
47
52
.
135.
Lee
,
S.-M.
,
Matamis
,
G.
,
Cahill
,
D. G.
, and
Allen
,
W. P.
,
1998
, “
Thin Film Materials and the Minimum Thermal Conductivity
,”
Microscale Thermophys. Eng.
,
2
, pp.
31
36
.
136.
An
,
K.
,
Ravichandran
,
K. S.
,
Dutton
,
R. E.
, and
Semiatin
,
S. L.
,
1999
, “
Microstructure, Texture, and Thermal Conductivity of Single-Layer and Multilayer Thermal Barrier Coatings of Y2O3-stabilized ZrO2 and Al2O3 Made by Physical Vapor Deposition
,”
J. Am. Ceram. Soc.
,
82
, pp.
399
406
.
137.
Soyez
,
G.
,
Eastman
,
J. A.
,
Thompson
,
L. J.
,
Bai
,
G.-R.
,
Baldo
,
P. M.
,
McCormick
,
A. W.
,
DiMelfi
,
R. J.
,
Elmustafa
,
A. A.
,
Tambwe
,
M. F.
, and
Stone
,
D. S.
,
2000
, “
Grain-Size-Dependent Thermal Conductivity of Nanocrystalline Yttria-Stabilized Zirconia Films Grown by Metal-Organic Chemical Vapor Deposition
,”
Appl. Phys. Lett.
,
77
, pp.
1155
1157
.
138.
Hyldegaard
,
P.
, and
Mahan
,
G. D.
,
1997
, “
Phonon Superlattice Transport
,”
Phys. Rev. B
,
56
, pp.
10754
10757
.
139.
Ichiro Tamura
,
S.
,
Tanaka
,
Y.
, and
Maris
,
H. J.
,
1999
, “
Phonon Group Velocity and Thermal Conduction in Superlattices
,”
Phys. Rev. B
,
60
, pp.
2627
2630
.
140.
Kiselev
,
A. A.
,
Kim
,
K. W.
, and
Stroscio
,
M. A.
,
2000
, “
Thermal Conductivity of Si/Ge Superlattices:A Realistic Model With a Diatomic Unit Cell
,”
Phys. Rev. B
,
62
, pp.
6896
6899
.
141.
Bies
,
W. E.
,
Radtke
,
R. J.
, and
Ehrenreich
,
H.
,
2000
, “
Phonon Dispersion Effects and the Thermal Conductivity Reduction in GaAs/AlAs Superlattices
,”
J. Appl. Phys.
,
88
, pp.
1498
1503
.
142.
Lee
,
S.-M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
,
70
, pp.
2957
2959
.
143.
Simkin
,
M. V.
, and
Mahan
,
G. D.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
, pp.
927
930
.
144.
Afromowitz
,
M. A.
,
1973
, “
Thermal Conductivity of GaAlAs Alloys
,”
J. Appl. Phys.
,
44
, pp.
1292
1294
.
145.
Liu
,
W. L.
,
Borca-Tasciuc
,
T.
,
Chen
,
G.
,
Liu
,
J. L.
, and
Wang
,
K. L.
,
2001
, “
Anisotropic Thermal Conductivity of Ge Quantum-Dot and Symmetrically Strained Si/Ge Superlattices
,”
J. Nanosci. Nanotech.
,
1
, pp.
39
42
.
146.
VonArx
,
M.
,
Paul
,
O.
, and
Baltes
,
H.
,
2000
, “
Process-Dependent thin-Film Thermal Conductivities for Thermal CMOS MEMS
,”
J. Microelectromech. Syst.
,
9
, pp.
136
145
.
147.
Uma, S., McConnell, A. D., Asheghi, M., Kurabayashi, K., and Goodson, K. E., 2000, “Temperature Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers,” Int. J. Thermophys., in press.
148.
McConnell, A. D., Srinivasan, U., Asheghi, M., and Goodson, K. E., 2002, “Thermal Conductivity of Doped Polysilicon,” J. Microelectromech. Syst., in press.
149.
Ziman, J. M., 1960, Electrons and Phonons, Oxford University Press, Oxford, United Kingdom.
150.
Verhoeven
,
H.
,
Boettger
,
E.
,
Floter
,
A.
,
Reiss
,
H.
, and
Zachai
,
R.
,
1997
, “
Thermal-Resistance and Electrical Insulation of Thin Low-Temperature-Deposited Diamond Films
,”
Diamond Relat. Mater.
,
6
, pp.
298
302
.
151.
Goodson
,
K. E.
,
1996
, “
Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures
,”
ASME J. Heat Transfer
,
118
, pp.
279
286
.
152.
Goodson
,
K. E.
,
Flik
,
M. I.
,
Su
,
L. T.
, and
Antoniadis
,
D. A.
,
1993
, “
Annealing-Temperature Dependence of the Thermal Conductivity of LPCVD Silicon-Dioxide Layers
,”
IEEE Electron Device Lett.
,
14
, pp.
490
492
.
153.
Cahill
,
D. G.
,
Watson
,
S. K.
, and
Pohl
,
R. O.
,
1992
, “
Lower Limit to the Thermal Conductivity of Disordered Crystals
,”
Phys. Rev. B
,
36
, pp.
6131
6140
.
154.
Alivisatos
,
A. P.
,
1996
, “
Semiconductor Clusters, Nanocrystals, and Quantum Dots
,”
Science
,
271
, pp.
933
936
.
155.
Duan
,
X.
, and
Lieber
,
C. M.
,
2000
, “
General Synthesis of Compound Semiconductor Nanowires
,”
Adv. Mater.
,
12
, pp.
298
302
.
156.
Morales
,
A. M.
, and
Lieber
,
C. M.
,
1998
, “
A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires
,”
Science
,
279
, pp.
208
211
.
157.
Yiying
,
W.
, and
Yang
,
P.
,
2000
, “
Germanium/Carbon Core-Sheath Nanostructures
,”
Appl. Phys. Lett.
,
77
, pp.
43
45
.
158.
Cui
,
Y.
,
Lauhon
,
L. J.
,
Gudiksen
,
M. S.
,
Wang
,
J. F.
, and
Lieber
,
C. M.
,
2001
, “
Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires
,”
Appl. Phys. Lett.
,
78
, pp.
2214
2216
.
159.
Cui
,
Y.
, and
Lieber
,
C. M.
,
2001
, “
Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks
,”
Science
,
291
, pp.
851
853
.
160.
Lin
,
Y. M.
,
Cronin
,
S. B.
,
Ying
,
J. Y.
,
Dresselhaus
,
M. S.
, and
Heremans
,
J. P.
,
2000
, “
Transport Properties of Bi Nanowire Arrays
,”
Appl. Phys. Lett.
,
76
, pp.
3944
3946
.
161.
Chung
,
S. W.
,
Yu
,
J. W.
, and
Heath
,
J. R.
,
2000
, “
Silicon Nanowire Devices
,”
Appl. Phys. Lett.
,
76
, pp.
2068
2070
.
162.
Zhang
,
Z. B.
,
Sun
,
X. Z.
,
Dresselhaus
,
M. S.
,
Ying
,
J. Y.
, and
Heremans
,
J.
,
2000
, “
Electronic Transport Properties of Single-Crystal Bismuth Nanowire Arrays
,”
Phys. Rev. B
,
61
, pp.
4850
4861
.
163.
Schwab
,
K.
,
Henriksen
,
E. A.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
,
2000
, “
Measurement of Quantum Conductance of Thermal Conductance
,”
Nature (London)
,
404
, pp.
974
977
.
164.
Santamore
,
D. H.
, and
Cross
,
M. C.
,
2001
, “
Effect of Phonon Scattering by Surface Roughness on Universal Thermal Conductance
,”
Phys. Rev. Lett.
,
87
, pp.
U84–U86
U84–U86
.
165.
Volz
,
S.
, and
Lemonnier
,
D.
,
2000
, “
Confined Phonon and Size Effects on Nanowire Thermal Conductivity. The Radiative Transfer Approach
,”
Phys. Low-Dimensional Structures
,
5–6
, pp.
91
107
.
166.
Zou
,
J.
, and
Balandin
,
A.
,
2001
, “
Phonon Heat Conduction in a Semiconductor Nanowire
,”
J. Appl. Phys.
,
89
, pp.
2932
2938
.
167.
Hone
,
J.
,
Whitney
,
M.
,
Piskoti
,
C.
, and
Zettl
,
A.
,
1999
, “
Thermal Conductivity of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
59
, pp.
R2514–R2516
R2514–R2516
.
168.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tomanek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
, pp.
4613
4616
.
169.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P.
,
2001
, “
Thermal Transport Measurements of Individual Multiwall Carbon Nanotubes
,”
Phys. Rev. Lett.
,
87
, pp.
215502
215502
(1–4).
170.
Borca-Tasciuc, T., Achimov, D., Liu, W. L., Chen, G., Ren, H.-W., Lin, C.-H., and Pei, S. S., 2001, “Thermal Conductivity of InAs/AlSb superlattices,” Microscale Thermophys. Eng., 6, in press.
You do not currently have access to this content.