Whenever humid air comes in contact with a cooling coil whose temperature is below both the dew-point of water vapor in air and the freezing point, frost will form. The nature of the frost forming on the coil will depend to a large measure on the psychrometric conditions prevailing inside the freezer and whether the air around the coil is subsaturated or supersaturated. Psychrometric theory and the apparatus-dew-point calculating procedure assume that the cooling process path as the air passes through the coil is a straight-line on the psychrometric chart. The actual path is however a result of a much more complex series of processes and is therefore a curve. While researchers have calculated the actual process path on a dehumidifying coil, none has attempted to do the same for a frosted, multi-row coil. It is believed that determining the actual conditions leaving a given row in a multi-row freezer coil is a crucial step in identifying the coil location in the vicinity of which the transformation from the subsaturated zone to the supersaturated zone occurs. This will prove a key step in identifying a demarcation line between the unfavorable snow-like frost and the more traditional (and more favorable) frost formation patterns. Thus, the objective of this paper is to calculate the air path on an actual industrial-size finned-tube, multi-row coil utilizing experimentally derived data and correlate the shape of the path with the prevailing psychrometric conditions in the freezer in the hope of identifying the demarcation line in question.

1.
Sherif, S. A., Mago, P. J., Al-Mutawa, N. K., and Theen, R. S., 2001, “Psychrometric Theory Under Supersaturated Frosting Conditions.” Proceedings of the 37th Heat Transfer and Fluid Mechanics Institute, Reardon, F.H. and Thinh, N. D., eds., California State University at Sacramento, School of Engineering and Computer Science, Sacramento, California, pp. 177–188.
2.
Sherif
,
S. A.
,
Mago
,
P. J.
,
Al-Mutawa
,
N. K.
,
Theen
,
R. S.
, and
Bilen
,
K.
,
2001
, “
Psychrometrics in the Supersaturated Frost Zone.
ASHRAE Trans.
,
107
(
2
), pp.
753
767
.
3.
Padki
,
M. M.
,
Sherif
,
S. A.
, and
Nelson
,
R. M.
,
1989
, “
A Simple Method for Modeling Frost Formation in Different Geometries
,”
ASHRAE Trans.
,
95
(
2
), pp.
1127
1137
.
4.
Sherif
,
S. A.
,
Raju
,
S. P.
,
Padki
,
M. M.
, and
Chan
,
A. B.
,
1993
, “
A Semi-Empirical Transient Method for Modelling Frost Formation on a Flat Plate
,”
Int. J. Refrig.
,
16
(
5
), pp.
321
329
.
5.
Thomas
,
L.
,
Chen
,
H.
, and
Besant
,
R. W.
,
1999
, “
Measurement of Frost Characteristics on Heat Exchanger Fins—Part I: Test Facility and Instrumentation
,”
ASHRAE Trans.
,
105
(
2
), pp.
283
293
.
6.
Chen
,
H.
,
Thomas
,
L.
, and
Besant
,
R. W.
,
1999
, “
Measurement of Frost Characteristics on Heat Exchanger Fins—Part II: Data and Analysis
,”
ASHRAE Trans.
,
105
(
2
), pp.
294
302
.
7.
Chen
,
H.
,
Besant
,
R. W.
, and
Tao
,
Y. X.
,
1999
, “
Frost Characteristics and Heat Transfer on a Flat Plate Under Freezer Operating Conditions: Part II, Numerical Modeling and Comparison with Data
,”
ASHRAE Trans.
,
105
(
2
), pp.
252
259
.
8.
Besant, R. W., 1999, “Characterization of Frost Growth and Heat Transfer at Low Temperatures,” Final Report, ASHRAE RP-824, The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia.
9.
Notestine, H. E., 1966, “The Design, Fabrication, and Testing of an Apparatus to Study the Formation of Frost from Humid Air to an Extended Surface in Forced Convection,” M.S. thesis, The Ohio State University, Columbus, OH.
10.
Gates
,
R. R.
,
Sepsy
,
C. F.
, and
Huffman
,
G. D.
,
1967
, “
Heat Transfer and Pressure Loss in Extended Surface Heat Exchangers Operating Under Frosting Conditions—Part I: Literature Survey, Test Apparatus and Preliminary Results
,”
ASHRAE Trans.
,
73
(
2
), pp.
I.2.1–I.2.13
I.2.1–I.2.13
.
11.
Huffman, G. D., 1966, “Heat Transfer and Pressure Loss in an Extended Surface Heat Exchanger Operating Under Frosting Conditions,” M.S. thesis, The Ohio State University, Columbus, OH.
12.
Huffman
,
G. D.
, and
Sepsy
,
C. F.
,
1967
, “
Heat Transfer and Pressure Loss in Extended Surface Heat Exchangers Operating Under Frosting Conditions—Part II: Data Analysis and Correlations
,”
ASHRAE Trans.
,
73
(
2
), pp.
I.3.1–I.3.16
I.3.1–I.3.16
.
13.
Gatchilov, T. S., and Ivanova, V. S., 1979, “Characteristics of the Frost Formed on the Surface of Finned Air Coolers,” 15th International Congress of Refrigeration, Paper B2-71, Venice, France, pp. 997–1003.
14.
Kondepudi, S. N., 1988, “The Effects of Frost Growth on Finned Tube Heat Exchangers Under Laminar Flow,” Ph.D. dissertation, Texas A&M University, College Station, TX.
15.
Kondepudi
,
S. N.
, and
O’Neal
,
D. L.
,
1987
, “
The Effects of Frost Growth on Extended Surface Heat Exchanger Performance: A Review
,”
ASHRAE Trans.
,
93
(
2
), pp.
258
274
.
16.
Kondepudi
,
S. N.
, and
O’Neal
,
D. L.
,
1988
, “
Performance of Triangular Spine Fins Under Frosting Conditions
,”
Heat Recovery Syst. CHP
,
8
(
1
), pp.
1
7
.
17.
Kondepudi
,
S. N.
, and
O’Neal
,
D. L.
,
1989
, “
Effect of Frost Growth on the Performance of Louvered Finned Tube Heat Exchangers
,”
Int. J. Refrig.
,
12
(
3
), pp.
151
158
.
18.
Kondepudi, S. N., and O’Neal, D. L., 1989, “The Effects of Frost Formation on the Thermal Performance of Finned Tube Heat Exchangers,” AIAA 24th Thermophysics Conference, AIAA Paper No. 89–1741, Buffalo, New York.
19.
Kondepudi, S. N., and O’Neal, D. L., 1989, “The Performance of Finned Tube Heat Exchangers Under Frosting Conditions,” Collected Papers in Heat Transfer-1989, HTD-Vol. 123, ASME, New York, pp. 193–200.
20.
Kondepudi
,
S. N.
, and
O’Neal
,
D. L.
,
1990
, “
The Effects of Different Fin Configurations on the Performance of Finned-Tube Heat Exchangers Under Frosting Conditions
,”
ASHRAE Trans.
,
96
(
2
), pp.
439
444
.
21.
Kondepudi
,
S. N.
, and
O’Neal
,
D. L.
,
1991
, “
Frosting Performance of Tube Heat Exchangers with Wavy and Corrugated Fins
,”
Exp. Therm. Fluid Sci.
,
4
(
5
), pp.
613
618
.
22.
Kondepudi, S. N., and O’Neal, D. L., 1991, “Modeling Tube-Fin Heat Exchangers Under Frosting Conditions,” 18th International Congress of Refrigeration, Paper No. 242, Montreal, Quebec, Canada.
23.
Senshu
,
T.
,
Yasuda
,
H.
,
Oguni
,
K.
, and
Ishibane
,
K.
,
1990
, “
Heat Pump Performance Under Frosting Conditions: Part I—Heat and Mass Transfer on Cross-Finned Tube Heat Exchangers Under Frosting Conditions
,”
ASHRAE Trans.
,
96
(
1
), pp.
324
329
.
24.
Rite
,
R. W.
, and
Crawford
,
R. R.
,
1991
, “
A Parametric Study of the Factors Governing the Rate of Frost Accumulation on Domestic Refrigerator-Freezer Finned-Tube Evaporator
,”
ASHRAE Trans.
,
97
(
2
), pp.
438
446
.
25.
Ogawa
,
K.
,
Tanaka
,
N.
, and
Takeshita
,
M.
,
1993
, “
Performance Improvement of Plate Fin-and-Tube Heat Exchanger Under Frosting Conditions
,”
ASHRAE Trans.
,
99
(
1
), pp.
762
771
.
26.
Tao
,
Y. X.
,
Besant
,
R. W.
, and
Rezkallah
,
K. S.
,
1993
, “
A Mathematical Model for Predicting the Densification and Growth of Frost on a Flat Plate
,”
Int. J. Heat Mass Transf.
,
36
(
2
), pp.
353
363
.
27.
Tao
,
Y. X.
,
Besant
,
R. W.
, and
Mao
,
Y.
,
1993
, “
Characteristics of Frost Growth on a Flat Plate During the Early Growth Period
,”
ASHRAE Trans.
,
99
(
1
), pp.
739
745
.
28.
Al-Mutawa, N. K., 1997, “Experimental Investigations of Frosting and Defrosting of Evaporator Coils at Freezer Temperatures,” Ph.D. dissertation, University of Florida, Gainesville, FL.
29.
Sherif, S. A., Al-Mutawa, N. K., Mathur, G. D., Steadham, J. M., Tiedeman, J. S., MacFarlane, S., Urlaub, J., West, J., and Harker, R. A., 1997, “A Study to Determine Heat Loads Due to Coil Defrosting,” Final Technical Report No. UFME/SEECL-9701, Contract No. ASHRAE-622-RP, the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.
30.
Al-Mutawa
,
N. K.
,
Sherif
,
S. A.
,
Mathur
,
G. D.
,
West
,
J.
,
Tiedeman
,
J. S.
, and
Urlaub
,
J.
,
1998
, “
Determination of Coil Defrosting Loads: Part I—Experimental Facility Description (RP-622)
,”
ASHRAE Trans.
,
104
(
1A
), pp.
268
288
.
31.
Al-Mutawa
,
N. K.
,
Sherif
,
S. A.
,
Mathur
,
G. D.
,
Steadham
,
J. M.
,
West
,
J.
,
Harker
,
R. A.
, and
Tiedeman
,
J. S.
,
1998
, “
Determination of Coil Defrosting Loads: Part II—Instrumentation and Data Acquisition Systems (RP-622)
,”
ASHRAE Trans.
,
104
(
1A
), pp.
289
302
.
32.
Al-Mutawa
,
N. K.
,
Sherif
,
S. A.
, and
Mathur
,
G. D.
,
1998
, “
Determination of Coil Defrosting Loads: Part III—Testing Procedures and Data Reduction (RP-622)
,”
ASHRAE Trans.
,
104
(
1A
), pp.
303
312
.
33.
Al-Mutawa
,
N. K.
,
Sherif
,
S. A.
, and
Steadham
,
J. M.
,
1998
, “
Determination of Coil Defrosting Loads: Part IV—Refrigeration/Defrost Cycle Dynamics (RP-622)
,”
ASHRAE Trans.
,
104
(
1A
), pp.
313
343
.
34.
Al-Mutawa
,
N. K.
, and
Sherif
,
S. A.
,
1998
, “
Determination of Coil Defrosting Loads: Part V—Analysis of Loads (RP-622)
,”
ASHRAE Trans.
,
104
(
1A
), pp.
344
355
.
35.
Grimison
,
E. D.
,
1937
,
Trans. ASME
,
59
, pp.
583
583
.
36.
Dittus, F. W., and Boelter, L. M. K., 1930, Publications in Engineering 2, University of California, Berkeley, CA, pp. 443.
37.
Yonko
,
J. D.
, and
Sepsy
,
C. F.
,
1967
, “
An Investigation of the Thermal Conductivity of Frost While Forming on a Flat Horizontal Plate
,”
ASHRAE Trans.
,
73
(
2
), pp.
I.1.1–I.1.10
I.1.1–I.1.10
.
38.
Hayashi
,
Y.
,
Aoki
,
A.
,
Adachi
,
S.
, and
Hori
,
K.
,
1977
, “
Study of Frost Properties Correlating With Frost Formation Types
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
239
245
.
39.
Hayashi
,
Y.
,
Aoki
,
K.
, and
Yuhara
,
H.
,
1977
, “
Study of Frost Formation Based on a Theoretical Model of the Frost Layer
,”
Heat Transfer-Jpn. Res.
,
6
(
3
), pp.
79
94
.
40.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, Fourth Edition, John Wiley & Sons, Inc., New York.
41.
Kuehn, T. H., Ramsey, J. W., and Therelkeld, J. L., 1998, Thermal Environment Engineering, Third Edition, Prentice Hall, Upper Saddle River, NJ.
You do not currently have access to this content.