Spatially resolved Nusselt numbers, spatially-averaged Nusselt numbers, and friction factors are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45 deg with parallel orientations on two opposite surfaces. Results are given at different Reynolds numbers based on channel height from 9000 to 76,000. The ratio of rib height to hydraulic diameter is 0.078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25 percent of the channel cross-sectional area. Nusselt numbers are determined with three-dimensional conduction considered within the acrylic test surface. Test surface conduction results in important variations of surface heat flux, which give decreased local Nusselt number ratios near corners, where each rib joins the flat part of the test surface, and along the central part of each rib top surface. However, even with test surface conduction included in the analysis, spatially-resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer re-attachment have pronounced influences on local surface heat transfer behavior. The augmented local and spatially averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) decrease on the rib tops, and on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. With conduction along and within the test surface considered, globally averaged Nusselt number ratios vary from 3.53 to 1.79 as Reynolds number increases from 9000 to 76,000. Corresponding thermal performance parameters also decrease as Reynolds number increases over this range.

1.
Lau, S. C., 2001, “Enhanced Internal Cooling of Gas Turbine Airfoils,” Heat Transfer in Gas Turbines, S. Sunden, and M. Faghri, eds., WIT Press, Southampton, U.K., pp. 109–175.
2.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.
3.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction For Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
7
), pp.
1143
1156
.
4.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
5.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer
,
113
, pp.
590
596
.
6.
Han
,
J. C.
,
Huang
,
J. J.
, and
Lee
,
C. P.
,
1993
, “
Augmented Heat Transfer in Square Channels With Wedge-Shaped and Delta-Shaped Turbulence Promoters
,”
J. Enhanced Heat Transfer
,
1
(
1
), pp.
37
52
.
7.
Taslim
,
M. E.
,
Li
,
T.
, and
Kercher
,
D. M.
,
1996
, “
Experimental Heat Transfer and Friction in Channels Roughened With Angled, V-Shaped, and Discrete Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
118
, pp.
20
28
.
8.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1998
, “
Measurements of Heat Transfer Coefficients and Friction Factors in Passages Rib-Roughened On All Walls
,”
ASME J. Turbomach.
,
120
, pp.
564
570
.
9.
Wang
,
Z.
,
Ireland
,
P. T.
,
Kohler
,
S. T.
, and
Chew
,
J. W.
,
1998
, “
Heat Transfer Measurements to a Gas Turbine Cooling Passage With Inclined Ribs
,”
ASME J. Turbomach.
,
120
, pp.
63
69
.
10.
Thurman, D., and Poinsatte, P., 2000, “Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model With Ribs and Bleed,” ASME Paper No. 2000-GT-233.
11.
Cho, H. H., Lee S. Y., and Wu S. J., 2001, “The Combined Effects of Rib Arrangements and Discrete Ribs on Local Heat/Mass Transfer in a Square Duct,” ASME Paper No. 2001-GT-175.
12.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2011
2020
.
13.
Ligrani
,
P. M.
, and
Mahmood
,
G. I.
,
2003
, “
Variable Property Nusselt Numbers in a Channel With Pin-Fins
,”
AIAA Journal of Thermophysics and Heat Transfer
,
17
(
1
), pp.
103
111
.
14.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
,
2003
, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
11
18
.
15.
Sargent
,
S. R.
,
Hedlund
,
C. R.
, and
Ligrani
,
P. M.
,
1998
, “
An Infrared Thermography Imaging System For Convective Heat Transfer Measurements in Complex Flows
,”
Meas. Sci. Technol.
,
9
(
12
), pp.
1974
1981
.
16.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
17.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
18.
Lienhard, J. H., 1987, A Heat Transfer Textbook, Second Edition, Prentice-Hall Inc., Englewood Cliffs, NJ.
19.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
, pp.
1127
1136
.
You do not currently have access to this content.