It is demonstrated by a concise standard derivation, motivated by principles of rational continuum mechanics and irreversible thermodynamics augmented by novel detailed examples, that for heat conduction in linearly anisotropic solids: (1) common restrictions placed on the form of the thermal conductivity tensor are insufficient to guarantee satisfaction of the second law of thermodynamics, and (2) satisfaction of the first and second laws of thermodynamics alone is still insufficient to insure agreement between heat flow predictions and observation. An additional constraint beyond that given in many standard studies, namely that all three principal invariants of the conductivity tensor be positive semi-definite, is imposed in order to guarantee satisfaction of the entropy inequality. Thus constrained, such a theory remains under-restricted and can admit purely cyclic heat fluxes, which are not observed in nature. Imposition of the conjectures of Duhamel and Stokes, which are in fact earlier specific incarnations of Onsager’s reciprocity theory, on the constitutive model relating heat flux to temperature gradient is a sufficient remedy.

1.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. I
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.
2.
Duhamel
,
J.-M.-C.
,
1832
, “
Sur les E´quations Ge´ne´rales de la Propagation de la Chaleur dans les Corps Solides dont la Conductibilite´ n’est pas la Me^me dans Tous les Sens
,”
J. Ec. Polytech. (Paris)
,
13
(
21
), pp.
356
399
.
3.
Stokes
,
G. G.
,
1851
, “
On the Conduction of Heat in Crystals
,”
Cambridge and Dublin Math. J.
,
6
, pp.
215
238
.
4.
Soret
,
C.
,
1893
, “
Sur l’E´tude Expe´rimentale des Coefficients Rotationnels de Conductibilite´ Thermique
,”
Arch. Sci. Phys. Nat.
,
29
, pp.
355
357
.
5.
Voigt
,
W.
,
1903
, “
Fragen der Kristallphysik I. U¨ber die Rotatorischen Constanten der Wa¨rmeleitung von Apatit und Dolomit
,”
Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.
,
3
, pp.
87
89
.
6.
Voigt, W., 1910, Lehrbuch der Kristallphysik, Teubner, Leipzig.
7.
Mu¨ller, I., and Ruggeri, T., 1998, Rational Extended Thermodynamics, Second ed., Springer, New York.
8.
deGroot, S. R., and Masur, P., 1984, Non-Equilibrium Thermodynamics, Dover, New York.
9.
Casimir
,
H. B. G.
,
1945
, “
On Onsager’s Principle of Microscopic Reversibility
,”
Rev. Mod. Phys.
,
17
(
2–3
), pp.
343
350
.
10.
Prigogene, I., 1967, Thermodynamics of Irreversible Processes, Third ed., Wiley, New York.
11.
Miller
,
D.
,
1960
, “
Thermodynamics of Irreversible Processes, the Experimental Verification of the Onsager Reciprocal Relations
,”
Chem. Rev. (Washington, D.C.)
,
60
, pp.
15
37
.
12.
Woods, L. C., 1975, The Thermodynamics of Fluid Systems, Clarendon, Oxford.
13.
Fung, Y. C., 1965, Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey.
14.
Truesdell, C., 1969, Rational Thermodynamics, McGraw-Hill, New York.
15.
Day
,
W. A.
, and
Gurtin
,
M. E.
,
1969
, “
On the Symmetries of the Conductivity Tensor and Other Restrictions in the Nonlinear Theory of Heat Conduction
,”
Arch. Ration. Mech. Anal.
,
33
, pp.
26
32
.
16.
Oono
,
Y.
,
1993
, “
Onsager’s Principle From Large Deviation Point of View
,”
Prog. Theor. Phys.
,
89
(
5
), pp.
973
983
.
17.
Sieniutycz
,
S.
, and
Berry
,
R. S.
,
1993
, “
Canonical Formalism, Fundamental Equation, and Generalized Thermomechanics for Irreversible Fluids With Heat Transfer
,”
Phys. Rev. E
,
47
(
3
), pp.
1765
1783
.
18.
Allahverdyan
,
A. E.
, and
Nieuwenhuizen
,
Th. M.
,
2000
, “
Adiabatic Steady State: Its Thermodynamics, Entropy Production, Energy Dissipation, and Violation of Onsager Relations
,”
Phys. Rev. E
,
62
(
1
), pp.
845
850
.
19.
LaCour
,
B. R.
, and
Schieve
,
W. C.
,
2004
, “
Derivation of the Onsager Principle From Large Deviation Theory
,”
Physica A
,
331
(
1–2
), pp.
109
124
.
20.
Carslaw, H. S., and Jaeger, J. C., 1986, Conduction of Heat in Solids, Second ed., Clarendon, Oxford.
21.
O¨zis¸ik, M. N., 1993, Heat Conduction, Wiley, New York.
22.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York.
23.
Gebhardt, B., 1993, Heat Conduction and Mass Diffusion, McGraw-Hill, New York.
24.
Mulholland
,
G. P.
, and
Gupta
,
B. P.
,
1977
, “
Heat Transfer in a Three-Dimensional Anisotropic Solid of Arbitrary Shape
,”
ASME J. Heat Transfer
,
99
(
1
), pp.
135
137
.
25.
Chang
,
Y. P.
,
1977
, “
Analytical Solution for Heat Conduction in Anisotropic Media in Infinite, Semi-Infinite, and Two-Plane-Bounded Regions
,”
Int. J. Heat Mass Transfer
,
20
(
10
), pp.
1019
1028
.
26.
Sadd
,
M. H.
, and
Miskioglu
,
I.
,
1978
, “
Temperatures in an Anisotropic Sheet Containing an Insulated Elliptical Hole
,”
ASME J. Heat Transfer
,
100
(
3
), pp.
553
555
.
27.
Chang
,
Y. P.
, and
Poon
,
K. C.
,
1979
, “
Three-Dimensional, Steady-State Heat-Conduction in Cylinders of General Anisotropic-Media
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
548
553
.
28.
Huang
,
S. C.
, and
Chang
,
Y. P.
,
1984
, “
Anisotropic Heat-Conduction With Mixed Boundary Conditions
,”
ASME J. Heat Transfer
,
106
(
3
), pp.
646
648
.
29.
Zhang
,
X. Z.
,
1990
, “
Steady-State Temperatures in an Anisotropic Strip
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
16
20
.
30.
Hsieh
,
M.-H.
, and
Ma
,
C.-C.
,
2002
, “
Analytical Investigations for Heat Conduction Problems in Anisotropic Thin-Layer Media With Embedded Heat Sources
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4117
4132
.
31.
Ma
,
C.-C.
, and
Chang
,
S.-W.
,
2004
, “
Analytical Exact Solutions of Heat Conduction Problems for Anisotropic Multi-Layered Media
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1643
1655
.
32.
Strang, G., 1988, Linear Algebra and its Application, Third ed., Harcourt Brace Jovanovich, Fort Worth, TX.
33.
Aris, R., 1962, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover, New York.
You do not currently have access to this content.