A simple model is formulated for the analysis of the spreading and solidification processes of a molten metal droplet impinging on a solid substrate. At the first stage, the model evaluates the diameter and the radial velocity of the spreading molten metal layer at the instant t0=D/W from the start of impact using analytical relations. Here D and W are, respectively, the diameter and the velocity of the impinging droplet. Numerical predictions on the evolution of the spreading metal layer are obtained by using a modified splat-quench solidification model with initial conditions described at the instant t0=D/W. The model predictions are compared with the experimental data available from the literature. A systematic parametric study is carried out to illustrate the model predictions at different impinging conditions.

1.
Pawlowski, L., 1995, The Science and Engineering of Thermal Spray Coatings, Wiley, New York.
2.
Cheng
,
D.
,
Trapaga
,
G.
,
McKelliget
,
J. W.
, and
Lavernia
,
E. J.
,
2003
, “
Mathematical Modeling of High Velocity Oxygen Fuel Thermal Spraying of Nanocrystalline Materials: An Overview
,”
Modell. Simul. Mater. Sci. Eng.
,
11
, pp.
R1–R31
R1–R31
.
3.
Lavernia, E. J., and Wu, Y., 1996, Spray Atomization and Deposition, Wiley, United Kingdom.
4.
Gao
,
F.
, and
Sonin
,
A. A.
,
1994
, “
Precise Deposition of Molten Micro-Drops: The Physics of Digital Microfabrication
,”
Proc. R. Soc. London, Ser. A
,
444
, pp.
533
554
.
5.
Amon
,
C. H.
,
Schmaltz
,
K. S.
,
Merz
,
R.
, and
Prinz
,
F. B.
,
1996
, “
Numerical and Experimental Investigation of Interface Bonding Via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME J. Heat Transfer
,
118
, pp.
164
172
.
6.
Orme
,
M. F.
, and
Smith
,
R. F.
,
2000
, “
Enhanced Aluminum Properties by Means of Precise Droplet Deposition
,”
ASME J. Manuf. Sci. Eng.
,
122
, pp.
484
493
.
7.
Madejski
,
J.
,
1976
, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transfer
,
19
, pp.
1009
1013
.
8.
Bennet
,
T.
, and
Poulikakos
,
D.
,
1993
, “
Splat-Quench Solidification: Estimating the Maximum Spreading of a Droplet Impacting on a Solid Surface
,”
J. Mater. Sci.
,
28
, pp.
963
970
.
9.
Zhao
,
Z.
,
Poulikakos
,
D.
, and
Fukai
,
J.
,
1996
, “
Heat Transfer and Fluid Dynamics During the Collision of a Liquid Droplet on a Substrate—I. Modeling
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2771
2789
.
10.
Zhao
,
Z.
,
Poulikakos
,
D.
, and
Fukai
,
J.
,
1996
, “
Heat Transfer and Fluid Dynamics During the Collision of a Droplet on a Substrate—II. Experiments
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2791
2802
.
11.
Schiaffino
,
S.
, and
Sonin
,
A. A.
,
1997
, “
Molten Metal Deposition and Solidification at Low Weber Numbers
,”
Phys. Fluids
,
9
, pp.
3172
3187
.
12.
Delplanque
,
J. P.
, and
Rangel
,
R. H.
,
1997
, “
An Improved Model for Droplet Solidification on a Flat Surface
,”
J. Mater. Sci.
,
32
, pp.
1519
1530
.
13.
Delplanque
,
J. P.
, and
Rangel
,
R. H.
,
1998
, “
A Comparison of Models, Numerical Simulation, and Experimental Results in Droplet Deposition Processes
,”
Acta Mater.
,
46
, pp.
4925
4933
.
14.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
,
Bhola
,
R.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2929
2945
.
15.
Zarzalejo
,
L. J.
,
Schmaltz
,
K. S.
, and
Amon
,
C. H.
,
1999
, “
Molten Droplet Solidification and Substrate Remelting in Microcasting Part I: Numerical Modeling and Experimental Verification
,”
Heat Mass Transfer
,
34
, pp.
477
485
.
16.
Schmaltz
,
K. S.
,
Zarzalejo
,
L. J.
, and
Amon
,
C. H.
,
1999
, “
Molten Droplet Solidification and Substrate Remelting in Microcasting Part II: Parametric Study and Effect of Dissimilar Materials
,”
Heat Mass Transfer
,
35
, pp.
17
23
.
17.
Attinger
,
D.
,
Zhao
,
Z.
, and
Poulikakos
,
D.
,
2000
, “
An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics
,”
ASME J. Heat Transfer
,
122
, pp.
544
556
.
18.
Wan
,
Y. P.
,
Zhang
,
H.
,
Jiang
,
X. Y.
,
Sampath
,
S.
, and
Prasad
,
V.
,
2001
, “
Role of Solidification, Substrate Temperature and Reynolds Number on Droplet Spreading in Thermal Spray Deposition: Measurements and Modeling
,”
ASME J. Heat Transfer
,
123
, pp.
382
389
.
19.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2229
2242
.
20.
Yang
,
Y.-S.
,
Kim
,
H.-Y.
, and
Chun
,
J.-H.
,
2003
, “
Spreading and Solidification of a Molten Microdrop in the Solder Jet Pumping Process
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
26
, pp.
215
221
.
21.
Markworth
,
A. J.
, and
Saunders
,
J. H.
,
1992
, “
An Improved Velocity Field for the Madejski Splat-Quench Solidification Model
,”
Int. J. Heat Mass Transfer
,
35
, pp.
1836
1837
.
22.
Sivakumar
,
D.
, and
Nishiyama
,
H.
,
2004
, “
Analysis of Madejski Splat-Quench Solidification Model With Modified Initial Conditions
,”
ASME J. Heat Transfer
,
126
, pp.
485
489
.
23.
Fukai
,
J.
,
Shiiba
,
Y.
,
Yamomoto
,
T.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
, and
Zhao
,
Z.
,
1995
, “
Wetting Effects on the Spreading of a Liquid Droplet Colliding With a Flat Surface: Experiment and Modeling
,”
Phys. Fluids
,
7
, pp.
236
247
.
24.
Mao
,
T.
,
Kuhn
,
D. C. S.
, and
Tran
,
H.
,
1997
, “
Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces
,”
AIChE J.
,
43
, pp.
2169
2179
.
25.
Aziz
,
S. D.
, and
Chandra
,
S.
,
2000
, “
Impact, Recoil and Splashing of Molten Metal Droplets
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2841
2857
.
26.
Kim
,
H.-Y.
, and
Chun
,
J.-H.
,
2001
, “
The Recoiling of Liquid Droplets Upon Collision With Solid Surfaces
,”
Phys. Fluids
,
13
, pp.
643
659
.
27.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
,
2002
, “
Time Evolution of Liquid Drop Impact Onto Solid, Dry Surfaces
,”
Exp. Fluids
,
33
, pp.
112
124
.
28.
Roisman
,
I. V.
,
Rioboo
,
R.
, and
Tropea
,
C.
,
2002
, “
Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding
,”
Proc. R. Soc. London, Ser. A
,
458
, pp.
1411
1430
.
29.
Liu
,
W.
,
Wang
,
G. X.
, and
Matthys
,
E. F.
,
1995
, “
Thermal Analysis and Measurements for a Molten Metal Drop Impacting on a Substrate: Cooling, Solidification and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
38
, pp.
1387
1395
.
30.
Wang
,
G. X.
, and
Matthys
,
E. F.
,
1996
, “
Experimental Investigation of Interfacial Conductance for Molten Metal Drop Impinging on a Substrate: Cooling, Solidification and Heat Transfer Coefficient
,”
ASME J. Heat Transfer
,
118
, pp.
157
163
.
31.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, London.
32.
Trapaga
,
G.
,
Matthys
,
E. F.
,
Valencia
,
J. J.
, and
Szekely
,
J.
,
1992
, “
Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results
,”
Metall. Trans. B
,
23B
, pp.
701
718
.
33.
Amada
,
S.
,
Tomoyasu
,
K.
, and
Haruyama
,
M.
,
1997
, “
Splat Formation of Molten Sn, Cu and Ni Droplets
,”
Surf. Coat. Technol.
,
96
, pp.
176
183
.
34.
Amada
,
S.
,
Haruyama
,
M.
,
Ohyagi
,
T.
, and
Tomoyasu
,
K.
,
2001
, “
Wettability Effect on the Flattening Ratio of Molten Metal Droplets
,”
Surf. Coat. Technol.
,
138
, pp.
211
219
.
35.
Haller
,
K. K.
,
Ventikos
,
Y.
,
Poulikakos
,
D.
, and
Monkewitz
,
P.
,
2003
, “
Shock Wave Formation in Droplet Impact on a Rigid Surface: Lateral Liquid Motion and Multiple Wave Structure in the Contact Line Region
,”
J. Fluid Mech.
,
490
, pp.
1
14
.
36.
Schiaffino
,
S.
, and
Sonin
,
A. A.
,
1997
, “
Motion and Arrest of a Molten Contact Line on a Cold Surface: An Experimental Study
,”
Phys. Fluids
,
9
, pp.
2217
2226
.
You do not currently have access to this content.