Numerical studies of unsteady heat transfer in grooved channel flows are made. The flows are of special relevance to electronic systems. Predictions suggest a commonly used periodic flow assumption (for modeling rows of similar electronic components) may not be valid over a significant system extent. It is found that the downstream flow development is strongly dependent on geometry.

1.
Chung, Y. M., Tucker, P. G., and Luo, K. H., 2001, “Large-Eddy Simulation of Complex Internal Flows,” in Direct and Large-Eddy Simulation IV, B. J. Geurts, R. Friedrich, and O. Me`tais, eds., Kluwer Academic Publishers, The Netherlands, pp. 373–380.
2.
Chung
,
Y. M.
,
Luo
,
K. H.
, and
Sandham
,
N. D.
,
2002
, “
Numerical Study of Momentum and Heat Transfer in Unsteady Impinging Jets
,”
Int. J. Heat Fluid Flow
,
23
, pp.
592
600
.
3.
Chung
,
Y. M.
,
Tucker
,
P. G.
, and
Roychowdhury
,
D. G.
,
2003
, “
Unsteady Laminar Flow and Convective Heat Transfer in a Sharp 180° Bend
,”
Int. J. Heat Fluid Flow
,
24
, pp.
67
76
.
4.
Chung
,
Y. M.
, and
Luo
,
K. H.
,
2002
, “
Unsteady Heat Transfer Analysis of an Impinging Jet
,”
ASME J. Heat Transfer
,
124
, pp.
1039
1048
.
5.
Ghaddar
,
N. K.
,
Karczak
,
K. Z.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1986a
, “
Numerical Investigation of Incompressible Flow in Grooved Channels, Part 1. Stability and Self-Sustained Oscillations
,”
J. Fluid Mech.
,
163
, pp.
99
127
.
6.
Ghaddar
,
N. K.
,
Magen
,
M.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1986b
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 2. Resonance and Oscillatory Heat-Transfer Enhancement
,”
J. Fluid Mech.
,
168
, pp.
541
567
.
7.
Amon
,
C. H.
, and
Mikic
,
B. B.
,
1990
, “
Numerical Prediction of Convective Heat Transfer in Self-Sustained Oscillatory Flows
,”
J. Thermophys. Heat Transfer
,
4
, pp.
239
246
.
8.
Amon
,
C. H.
,
1992
, “
Heat Transfer Enhancement by Flow Destabilization in Electronic Chip Configurations
,”
ASME J. Electron. Packag.
,
114
, pp.
35
40
.
9.
Nigen
,
J. S.
, and
Amon
,
C. H.
,
1993
, “
Forced Convective Cooling Enhancement of Electronic Package Configurations Through Self-Sustained Oscillatory Flows
,”
ASME J. Electron. Packag.
,
115
, pp.
356
365
.
10.
Nigen
,
J. S.
, and
Amon
,
C. H.
,
1994
, “
Time-Dependent Conjugate Heat Transport Characteristics of Self-Sustained Oscillatory Flows in a Grooved Channel
,”
ASME J. Fluids Eng.
,
116
, pp.
499
507
.
11.
Nigen
,
J. S.
, and
Amon
,
C. H.
,
1995
, “
Effect of Material Composition and Localized Heat Generation on Time-Dependent Conjugate Heat Transport
,”
Int. J. Heat Mass Transfer
,
38
, pp.
1565
1576
.
12.
Wang
,
G.
, and
Vanka
,
S. P.
,
1995
, “
Convective Heat Transfer in Periodic Wavy Passages
,”
Int. J. Heat Mass Transfer
,
38
, pp.
3219
3230
.
13.
Greiner
,
M.
,
Fischer
,
P. F.
, and
Tufo
,
H.
,
2002
, “
Numerical Simulations of Resonant Heat Transfer Augmentation at Low Reynolds Numbers
,”
ASME J. Heat Transfer
,
124
, pp.
1169
1175
.
14.
Nishimura
,
T.
, and
Kawamura
,
Y.
,
1995
, “
Three-Dimensionality of Oscillatory Flow in a Two-Dimensional Symmetric Sinusoidal Wavy-Walled Channel
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
62
73
.
15.
Pauley
,
L. R.
,
Moin
,
P.
, and
Reynolds
,
W. C.
,
1990
, “
The Structure of Two-Dimensional Separation
,”
J. Fluid Mech.
,
220
, pp.
397
411
.
16.
Chung
,
Y. M.
,
Sung
,
H. J.
, and
Boiko
,
A. V.
,
1997
, “
Spatial Simulation of the Instability of Channel Flow With Local Suction/Blowing
,”
Phys. Fluids
,
9
, pp.
3258
3266
.
17.
Tucker, P. G., 2001, Computation of Unsteady Internal Flows, Kluwer Academic Publishers.
18.
Tropea
,
C. D.
, and
Gackstatter
,
R.
,
1985
, “
The Flow Over Two-Dimensional Surface-Mounted Obstacles at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
107
, pp.
489
494
.
You do not currently have access to this content.