Numerical studies of unsteady heat transfer in grooved channel flows are made. The flows are of special relevance to electronic systems. Predictions suggest a commonly used periodic flow assumption (for modeling rows of similar electronic components) may not be valid over a significant system extent. It is found that the downstream flow development is strongly dependent on geometry.
Issue Section:
Technical Notes
1.
Chung, Y. M., Tucker, P. G., and Luo, K. H., 2001, “Large-Eddy Simulation of Complex Internal Flows,” in Direct and Large-Eddy Simulation IV, B. J. Geurts, R. Friedrich, and O. Me`tais, eds., Kluwer Academic Publishers, The Netherlands, pp. 373–380.
2.
Chung
, Y. M.
, Luo
, K. H.
, and Sandham
, N. D.
, 2002
, “Numerical Study of Momentum and Heat Transfer in Unsteady Impinging Jets
,” Int. J. Heat Fluid Flow
, 23
, pp. 592
–600
.3.
Chung
, Y. M.
, Tucker
, P. G.
, and Roychowdhury
, D. G.
, 2003
, “Unsteady Laminar Flow and Convective Heat Transfer in a Sharp 180° Bend
,” Int. J. Heat Fluid Flow
, 24
, pp. 67
–76
.4.
Chung
, Y. M.
, and Luo
, K. H.
, 2002
, “Unsteady Heat Transfer Analysis of an Impinging Jet
,” ASME J. Heat Transfer
, 124
, pp. 1039
–1048
.5.
Ghaddar
, N. K.
, Karczak
, K. Z.
, Mikic
, B. B.
, and Patera
, A. T.
, 1986a
, “Numerical Investigation of Incompressible Flow in Grooved Channels, Part 1. Stability and Self-Sustained Oscillations
,” J. Fluid Mech.
, 163
, pp. 99
–127
.6.
Ghaddar
, N. K.
, Magen
, M.
, Mikic
, B. B.
, and Patera
, A. T.
, 1986b
, “Numerical Investigation of Incompressible Flow in Grooved Channels. Part 2. Resonance and Oscillatory Heat-Transfer Enhancement
,” J. Fluid Mech.
, 168
, pp. 541
–567
.7.
Amon
, C. H.
, and Mikic
, B. B.
, 1990
, “Numerical Prediction of Convective Heat Transfer in Self-Sustained Oscillatory Flows
,” J. Thermophys. Heat Transfer
, 4
, pp. 239
–246
.8.
Amon
, C. H.
, 1992
, “Heat Transfer Enhancement by Flow Destabilization in Electronic Chip Configurations
,” ASME J. Electron. Packag.
, 114
, pp. 35
–40
.9.
Nigen
, J. S.
, and Amon
, C. H.
, 1993
, “Forced Convective Cooling Enhancement of Electronic Package Configurations Through Self-Sustained Oscillatory Flows
,” ASME J. Electron. Packag.
, 115
, pp. 356
–365
.10.
Nigen
, J. S.
, and Amon
, C. H.
, 1994
, “Time-Dependent Conjugate Heat Transport Characteristics of Self-Sustained Oscillatory Flows in a Grooved Channel
,” ASME J. Fluids Eng.
, 116
, pp. 499
–507
.11.
Nigen
, J. S.
, and Amon
, C. H.
, 1995
, “Effect of Material Composition and Localized Heat Generation on Time-Dependent Conjugate Heat Transport
,” Int. J. Heat Mass Transfer
, 38
, pp. 1565
–1576
.12.
Wang
, G.
, and Vanka
, S. P.
, 1995
, “Convective Heat Transfer in Periodic Wavy Passages
,” Int. J. Heat Mass Transfer
, 38
, pp. 3219
–3230
.13.
Greiner
, M.
, Fischer
, P. F.
, and Tufo
, H.
, 2002
, “Numerical Simulations of Resonant Heat Transfer Augmentation at Low Reynolds Numbers
,” ASME J. Heat Transfer
, 124
, pp. 1169
–1175
.14.
Nishimura
, T.
, and Kawamura
, Y.
, 1995
, “Three-Dimensionality of Oscillatory Flow in a Two-Dimensional Symmetric Sinusoidal Wavy-Walled Channel
,” Exp. Therm. Fluid Sci.
, 10
, pp. 62
–73
.15.
Pauley
, L. R.
, Moin
, P.
, and Reynolds
, W. C.
, 1990
, “The Structure of Two-Dimensional Separation
,” J. Fluid Mech.
, 220
, pp. 397
–411
.16.
Chung
, Y. M.
, Sung
, H. J.
, and Boiko
, A. V.
, 1997
, “Spatial Simulation of the Instability of Channel Flow With Local Suction/Blowing
,” Phys. Fluids
, 9
, pp. 3258
–3266
.17.
Tucker, P. G., 2001, Computation of Unsteady Internal Flows, Kluwer Academic Publishers.
18.
Tropea
, C. D.
, and Gackstatter
, R.
, 1985
, “The Flow Over Two-Dimensional Surface-Mounted Obstacles at Low Reynolds Numbers
,” ASME J. Fluids Eng.
, 107
, pp. 489
–494
.Copyright © 2004
by ASME
You do not currently have access to this content.