Local entropy production rates are determined from a numerical and experimental study of natural convection in an enclosure. Numerical predictions are obtained from a control-volume-based finite element formulation of the conservation equations and the Second Law. The experimental procedure combines methods of particle image velocimetry and planar laser induced fluorescence for measured velocity and temperature fields in the enclosure. An entropy based conversion algorithm in the measurement procedure is developed and compared with numerical predictions of free convection in the cavity. The predicted and measured results show close agreement. A measurement uncertainty analysis suggests that the algorithm postprocesses velocities (accurate within ±0.5%) to give entropy production data, which is accurate within ±8.77% near the wall. Results are reported for free convection of air and water in a square cavity at various Rayleigh numbers. The results provide measured data for tracking spatial variations of friction irreversibility and local exergy losses.

1.
De Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Solution
,”
Int. J. Numer. Methods Fluids
,
3
, pp.
249
264
.
2.
Hortmann
,
M.
,
Peric
,
M.
, and
Scheuerer
,
G.
,
1990
, “
Finite Volume Multigrid Predictions for Laminar Natural Convection: Benchmark Solution
,”
Int. J. Numer. Methods Fluids
,
11
, pp.
189
207
.
3.
Lightstone, M. F., and Collins, W. M., 1994, “Simulation of Natural Convection of Air in a Square Cavity Using the GOTHIC Thermohydraulic Code,” Proceedings of the CNA/CNS Annual Conference, Montreal, Canada, June 5–8.
4.
Ismail
,
K. A. R.
, and
Scalon
,
V. L.
,
2000
, “
A Finite Element Free Convection Model for the Side Wall Heated Cavity
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1373
1389
.
5.
Bejan, A., 1996, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Time Systems and Finite-Time Processes, CRC Press, Boca Raton, FL.
6.
Poulikakos
,
D.
, and
Bejan
,
A.
,
1982
, “
A Fin Geometry for Minimum Entropy Generation in Forced Convection
,”
Trans. ASME
,
104
, pp.
616
623
.
7.
Zubair
,
S. M.
,
Kadaba
,
P. V.
, and
Evans
,
R. B.
,
1987
, “
Second-Law-Based Thermoeconomic Optimization of Two-phase Heat Exchangers
,”
ASME J. Heat Transfer
,
109
, pp.
287
294
.
8.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
Trans. ASME
,
101
, pp.
718
725
.
9.
Adeyinka, O. B., and Naterer, G. F., 2002, “Predictive Entropy Production and Measurement with Particle Image Velocimetry (PIV) for Recirculating Flows,” AIAA/ASME 8th Joint Thermophysics and Heat Transfer Conference, AIAA Paper-2002-3090, St. Louis, M., June.
10.
Moore, J., and Moore, J. G., 1983, “Entropy Production Rates from Viscous Flow Calculations Part I-A Turbulent Boundary Layer Flow,” ASME Gas Turbine Conference, ASME Paper 83-GT-70, Phoenix.
11.
Moore, J., and Moore, J. G., 1983, “Entropy Production Rates from Viscous Flow Calculations Part II—Flow in a Rectangular Elbow,” ASME Gas Turbine Conference, ASME Paper 83-GT-71, Phoenix.
12.
Drost
,
M. K.
, and
White
,
M. D.
,
1991
, “
Numerical Predictions of Local Entropy Generation in an Impinging Jet
,”
ASME J. Heat Transfer
,
113
, pp.
823
829
.
13.
Kramer-Bevan, J. S., 1992, “A Tool for Analysing Fluid Flow Losses,” M.Sc. thesis, University of Waterloo.
14.
Cheng
,
C. H.
,
Ma
,
W. P.
, and
Huang
,
W. H.
,
1994
, “
Numerical Predictions of Entropy Generation for Mixed Convective Flows in a Vertical Channel with Transverse Fin Arrays
,”
Int. J. Heat Mass Transfer
,
21
, pp.
519
530
.
15.
Sahin
,
A. Z.
,
2000
, “
Entropy Generation in Turbulent Liquid Flow Through a Smooth Duct Subjected to Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1469
1478
.
16.
Sahin
,
A. Z.
,
2002
, “
Entropy Generation and Pumping Power in a Turbulent Fluid Flow Through a Smooth Pipe Subjected to Constant Heat Flux
,”
Exergy, An International Journal
,
2
, pp.
314
321
.
17.
Demirel
,
Y.
,
1999
, “
Irreversibility Profiles in a Circular Couette Flow of Temperature Dependence Materials
,”
Int. Commun. Heat Mass Transfer
,
26
, pp.
75
83
.
18.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2002
, “
Thermodynamic Analysis of Flow and Heat Transfer Inside Channel with Two Parallel Plates
,”
Exergy, An International Journal
,
2
, pp.
140
146
.
19.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2002
, “
Analysis of Entropy Generation Inside Concentric Cylinder Annuli With Relative Rotation
,”
Int. J. Therm. Sci.
,
42
, pp.
513
521
.
20.
Baytas
,
A. C.
,
1997
, “
Optimization in an Enclosure for Minimum Entropy Generation in Natural Convection
,”
J. Non-Equilib. Thermodyn.
,
22
(
2
), pp.
145
155
.
21.
Baytas
,
A. C.
,
2000
, “
Entropy Generation for Natural Convection in an Inclined Porous Cavity
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2089
2099
.
22.
Megherbi
,
M.
,
Abbassi
,
H.
, and
Brahim
,
A. B.
,
2003
, “
Entropy Generation at the Onset of Natural Convection
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3441
3450
.
23.
Abu-Hijleh
,
B. A.
, and
Heilen
,
W. N.
,
1999
, “
Entropy Generation Due to Laminar Natural Convection Over a Heated Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
42
, pp.
4225
4233
.
24.
Meyer, K. E., Larsen, P. S., Guillard, F., and Westergaard, C. H., 2002, “Temperature and Velocity Fields in Natural Convection by PIV and LIF,” 11th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July.
25.
Coolen
,
M. C. J.
,
Kieft
,
R. N.
,
Rindt
,
C. C. M.
, and
Van Steenhoven
,
A. A.
,
1999
, “
Application of 2-D LIF Temperature Measurement in Water using a Nd:YAG Laser
,”
Exp. Fluids
,
27
, pp.
420
426
.
26.
Adeyinka, O. B., 2002, “Entropy and Second Law Optimization in Computational Thermofluids with Laser Based Measurements.,” M.Sc. thesis, University of Manitoba.
27.
Naterer, G. F., 2002, Heat Transfer in Single and Multiphase Systems, CRC Press, Boca Raton, FL.
28.
Adeyinka
,
O. B.
, and
Naterer
,
G. F.
,
2002
, “
Apparent Entropy Difference with Heat and Fluid Flow Irreversibilities
,”
Numer. Heat Transfer, Part B
,
42
, pp.
411
436
.
29.
Schneider, G. E., 1988, “Elliptic Systems: Finite Element Method I,” in Handbook of Numerical Heat Transfer, W. J. Minkoycz, E. M. Sparrow, G. E. Schneider, and R. H. Pletcher, eds., J Wiley, New York.
30.
Westerweel, J., 2002, “Introduction to PIV,” Dantec Dynamics website: www.dantecmt.com June.
31.
Mallinson
,
G. D.
, and
De Vahl Davis
,
G.
,
1977
, “
Three Dimensional Natural Convection in a Box: A Numerical Study
,”
J. Fluid Mech.
,
83
(
1
), pp.
1
31
.
32.
Hamady
,
F. J.
, and
Lloyd
,
J. R.
,
1989
, “
Study of Local Convection Heat Transfer in an Inclined Enclosure
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1697
1708
.
33.
FlowMap Particle Image Velocimetry Instrumentation: Installation and User Guide, Dantec Dynamics, Demark, 1998.
34.
Sheng
,
J.
,
Meng
,
H.
, and
Fox
,
R. O.
,
2000
, “
A Large Eddy PIV Method for Turbulence Dissipation Rate Estimation
,”
Chem. Eng. Sci.
,
55
, pp.
4423
4434
.
35.
Liu
,
Z. C.
,
Landreth
,
C. C.
,
Adrain
,
R. J.
, and
Hanratty
,
T. J.
,
1991
, “
High Resolution Measurement of Turbulent Structure in a Channel with Particle Image velocimetry
,”
Exp. Fluids
,
10
, pp.
301
312
.
36.
Naterer
,
G. F.
, and
Camberos
,
J. A.
,
2003
, “
Entropy and the Second Law in Fluid Flow and Heat Transfer Simulation
,”
AIAA Journal of Thermophysics and Heat Transfer
,
17
(
3
), pp.
360
371
.
37.
AIAA-Standard-S017-1995, 1995, “Assessment of Experimental Uncertainty with Application to Wind Tunnel Testing,” American Institute of Aeronautics and Astronautics, Washington, DC.
You do not currently have access to this content.