Abstract
Forced convection past a heated oblate spheroid is studied in an attempt to investigate the effect of the axis ratio on the heat transfer rate. The time-dependent full Navier–Stokes and energy equations are solved using a series truncation method. The axis ratios considered range from to 1 (a perfect sphere). The results for the flow and thermal fields are satisfactorily compared with relevant published research. The results are presented in the form of streamlines, isotherms, and the local and averaged Nusselt number distributions.
Issue Section:
Technical
Briefs
1.
Potter
, J. M.
, and Riley
, N.
, 1980, “Free Convection from a Heated Sphere at Large Grashof Number
,” J. Fluid Mech.
0022-1120, 100
(4
), pp. 769
–783
.2.
Geoola
, F.
and Cornish
, A. R. H.
, 1981, “Numerical Solution of Steady-State Free Convective Heat Transfer from a Solid Sphere
,” Int. J. Heat Mass Transfer
0017-9310, 24
(8
), pp. 1369
–1379
.3.
Geoola
, F.
and Cornish
, A. R. H.
, 1982, “Numerical Simulation of Free Convective Heat Transfer from a Sphere
,” Int. J. Heat Mass Transfer
0017-9310, 25
(11
), pp. 1677
–1687
.4.
Riley
, N.
, 1982, “The Heat Transfer from a Sphere in Free Convective Flow
,” Comput. Fluids
0045-7930, 14
(3
), pp. 225
–237
.5.
Brown
, S. N.
, and Simpson
, C. J.
, 1982, “Collision Phenomena in Free-Convective Flow over a Sphere
,” J. Fluid Mech.
0022-1120, 124
, pp. 123
–137
.6.
Singh
, S. N.
, and Hasan
, M. M.
, 1983, “Free Convection About a Sphere at Small Grashof Number
,” Int. J. Heat Mass Transfer
0017-9310, 26
(5
), pp. 781
–783
.7.
Dudek
, D. R.
, Fletcher
, T. H.
, Longwell
, J. P.
, and Sarofim
, A. F.
, 1988, “Natural Convection Induced Forces on Spheres at Low Grashof Numbers: Comparison of Theory with Experiment
,” Int. J. Heat Mass Transfer
0017-9310, 31
(4
), pp. 863
–873
.8.
Dennis
, S. C. R.
and Walker
, M. S.
, 1964, “Forced Convection from Heated Spheres
,” Aeronautical Research Council No. 26, 105
.9.
Whitaker
, S.
, 1972, “Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
.” AIChE J.
0001-1541, 18
(21
), 361
.10.
Dennis
, S. C. R.
, Walker
, D. A.
, and Hudson
, J. D.
, 1977, “Heat Transfer from a Sphere at Low Reynolds Numbers
.” J. Fluid Mech.
0022-1120, 60
(2
), pp. 273
–283
.11.
Sayegh
, N. N.
, and Gauvin
, W. H.
, 1979, “Numerical Analysis of Variable Property Heat Transfer to a Single Sphere in High Temperature Surroundings
,” AIChE J.
0001-1541, 25
(3
), pp. 522
–534
.12.
Hieber
, C. A.
, and Gebhart
, B.
, 1969, “Mixed Convection from a Sphere at Small Reynolds and Grashof Numbers
,” J. Fluid Mech.
0022-1120, 38
, pp. 137
–159
.13.
Acrivos
, A.
, 1966, “On the Combined Effect of Forced and Free Convection Heat Transfer in Laminar Boundary Layer Flows
,” Chem. Eng. Sci.
0009-2509, 21
, pp. 343
–352
.14.
Wong
, K.-L.
, Lee
, S-C.
, and Chen
, C-K.
, 1986, “Finite Element Solution of Laminar Combined Convection from a Sphere
,” Trans. ASME, J. Appl. Mech.
0021-8936, 108
, pp. 860
–865
.15.
Nguyen
, H. D.
, Paik
, S.
, and Chung
, J. N.
, 1993, “Unsteady Mixed Convection Heat Transfer from a Solid Sphere: The Conjugate Problem
,” Int. J. Heat Mass Transfer
0017-9310, 36
(18
), pp. 4443
–4453
.16.
Drummond
, C. K.
, and Lyman
, F. A.
, 1990, “Mass Transfer from a Sphere in an Oscillating Flow with Zero Mean Velocity
,” Comput. Mech.
0178-7675 6
, pp. 315
–326
.17.
Ha
, M. Y.
, and Yavuzkurt
, S.
, 1993, “A Theoretical Investigation of Acoustic Enhancement of Heat and Mass Transfer 1. Pure oscillating flow
,” Int. J. Heat Mass Transfer
0017-9310, 36
(8
), pp. 2183
–2192
.18.
Alassar
, R. S.
, Badr
, H. M.
, and Mavromatis
, H. A.
, 1999, “Heat Convection from a Sphere Placed in an Oscillating Free Stream
,” Int. J. Heat Mass Transfer
0017-9310, 42
, pp. 1289
–1304
.19.
Leung
, W. W.
, and Baroth
, E. C.
, 1991, “An Experimental Study Using Flow Visualization on the Effect of an Acoustic field on Heat Transfer from Spheres
,” Symposium on Microgravity Fluid Mechanics
, FED-Vol. 42
, The American Society of Mechanical Engineers
.20.
Lawrence
, C. J.
, and Weinbaum
, S.
, 1986, “The Force on an Axisymmetric Body in Lineraized, Time-Dependent Motion: A New Memory Term
,” J. Fluid Mech.
0022-1120, 71
, pp. 209
–218
.21.
Payne
, L. E.
, and Pell
, W. H.
, 1960, “The Stokes Flow Problem for a Class of Axially Symmetric bodies
.” J. Fluid Mech.
0022-1120, 7
, pp. 529
–549
.22.
Breach
, D. R.
, 1961, “Slow Flow Past Ellipsoids of Revolution
. J. Fluid Mech.
0022-1120, 10
, pp. 306
–314
.23.
Alassar
, R. S.
, and Badr
, H. M.
, 1999, “The Impulsively Started Flow Over Oblate Spheroids
,” ZAMP
0044-2275 50
, pp. 193
–205
.24.
Alassar
, R. S.
, and Badr
, H. M.
, 1999, “Oscillating Flow over oblate spheroids
,” Acta Mech.
0001-5970 137
(3-4
), pp. 237
–254
.25.
Alassar
, R. S.
, 1999, “Heat conduction from spheroids
.” ASME J. Heat Transfer
0022-1481, 121
, pp. 497
–499
.26.
Alassar
, R. S.
, and Badr
, H. M.
, 1999, “Steady Flow Past an Oblate Spheroid at Small Reynolds Number
,” J. Eng. Math.
0022-0833 1
, pp. 1
–11
.27.
Lai
, R. Y. S.
, and Mockros
, L. F.
, 1972, “The Stokes-Flow on Prolate and Oblate Spheroids During Axial Translatory Accelerations
,” J. Fluid Mech.
0022-1120 52
, 1
–15
.28.
Chang
, E. J.
, and Maxey
, M. R.
, 1994, “Unsteady Flow About a Sphere at Low to Moderate Reynolds Number. Part 1. Oscillatory motion
,” J. Fluid Mech.
0022-1120 277
, 347
–379
.29.
Jenson
, V. G.
, 1959, “Viscous Flow Around a Sphere at Low Reynolds Numbers (<40)
,” Proc. R. Soc. London, Ser. A
1364-5021, 249
, 346
.30.
LeClair
, B. P.
, Hamielec
, A. E.
, and Pruppacher
, H. R.
, 1970, “Numerical Study at the Drag on a Sphere at Low and Intermediate Reynolds Numbers
,” J. Atmos. Sci.
0022-4928 27
, pp. 308
–315
.31.
Rimon
, Y.
, and Cheng
, S. I.
, 1969, “Numerical Solution of a Uniform Flow Over a Sphere at Intermediate Reynolds Numbers
,” Phys. Fluids
0031-9171, 12
, pp. 949
–955
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.