Transient solid-liquid phase change occurring in a phase-change material (PCM) embedded in a metal foam is investigated. Natural convection in the melt is considered. Volume-averaged mass and momentum equations are employed, with the Brinkman-Forchheimer extension to the Darcy law to model the porous resistance. Owing to the difference in the thermal diffusivities between the metal foam and the PCM, local thermal equilibrium between the two is not assured. Assuming equilibrium melting at the pore scale, separate volume-averaged energy equations are written for the solid metal foam and the PCM and are closed using an interstitial heat transfer coefficient. The enthalpy method is employed to account for phase change. The governing equations are solved implicitly using the finite volume method on a fixed grid. The influence of Rayleigh, Stefan, and interstitial Nusselt numbers on the temporal evolution of the melt front location, wall Nusselt number, temperature differentials between the solid and fluid, and the melting rate is documented and discussed. The merits of incorporating metal foam for improving the effective thermal conductivity of thermal storage systems are discussed.

1.
Sparrow
,
E. M.
,
Patankar
,
S. V.
, and
Ramadhyani
,
S.
, 1977, “
Analysis of Melting in the Presence of Natural Convection in the Melt Region
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
520
526
.
2.
Gau
,
C.
, and
Viskanta
,
R.
, 1986, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
174
181
.
3.
Jany
,
P.
, and
Bejan
,
A.
, 1988, “
Scaling Theory of Melting With Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
1221
1235
.
4.
Yao
,
L. S.
, and
Prusa
,
J.
, 1989, “
Melting and Freezing
,”
Adv. Heat Transfer
0065-2717,
19
, pp.
1
95
.
5.
Beckermann
,
C.
, and
Viskanta
,
R.
, 1988, “
Natural Convection Solid/Liquid Phase Change in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
35
46
.
6.
Jany
,
P.
, and
Bejan
,
A.
, 1988, “
Scales of Melting in the Presence of Natural Convection in a Rectangular Cavity Filled With Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
526
529
.
7.
Bejan
,
A.
, 1989, “
Theory of Melting With Natural Convection in an Enclosed Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
407
415
.
8.
Chellaiah
,
S.
, and
Viskanta
,
R.
, 1990, “
Natural Convection Melting of a Frozen Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
887
899
.
9.
Chellaiah
,
S.
, and
Viskanta
,
R.
, 1990, “
Melting of Ice-Aluminum Balls Systems
,”
Exp. Therm. Fluid Sci.
0894-1777,
3
, pp.
222
231
.
10.
Viskanta
,
R.
, 1991, “
Phase Change Heat Transfer in Porous Media
,”
Proc. of 3rd Int. Symp. on Cold Region Heat Transfer
, University of Alaska,
Fairbanks
, pp.
1
24
.
11.
Ellinger
,
E. A.
, and
Beckermann
,
C.
, 1991, “
On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure
,”
Exp. Therm. Fluid Sci.
0894-1777,
4
, pp.
619
629
.
12.
Tong
,
X.
,
Khan
,
J. A.
, and
Amin
,
M. R.
, 1996, “
Enhancement of Heat Transfer by Inserting a Metal Matrix into a Phase Change Material
,”
Numer. Heat Transfer, Part A
1040-7782,
30
, pp.
125
141
.
13.
Vesligaj
,
M. J.
, and
Amon
,
C. H.
, 1999, “
Transient Thermal Management of Temperature Fluctuations During Time Varying Workloads on Portable Electronics
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
, pp.
541
550
.
14.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
, 2003, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
, pp.
116
125
.
15.
Harris
,
K. T.
,
Haji-Sheikh
,
A.
, and
Agwu Nnanna
,
A. G.
, 2001, “
Phase-Change Phenomena in Porous Media—A Non-Local Thermal Equilibrium Model
,”
Indian J. Pure Appl. Phys.
0019-5596,
44
, pp.
1619
1625
.
16.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2004, “
A Two-Temperature Model for Analysis of Passive Thermal Control Systems
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
628
637
.
17.
Minkowycz
,
W. J.
,
Haji-Sheikh
,
A.
, and
Vafai
,
K.
, 1999, “
On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source: The Sparrow Number
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3373
3385
.
18.
Nield
,
D. A.
, and
Bejan
,
A.
, 1992,
Convection in Porous Media
,
Springer-Verlag
, New York.
19.
Vafai
,
K.
, and
Sozen
,
M.
, 1990, “
An Investigation of a Latent Heat Storage Porous Bed and Condensing Flow Through it
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
1014
1022
.
20.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
, New York.
21.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
, 2003, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
0167-6636,
35
, pp.
1161
1176
.
22.
Price
,
D. C.
, 2003, “
A Review of Selected Thermal Management Solutions for Military Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
, pp.
26
39
.
23.
Ashby
,
M. F.
,
Evans
,
A.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. J. G.
, 2000,
Metal Foams: A Desgin Guide
,
Butterworth-Heinemann
, Boston.
24.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
939
954
.
25.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measument of Interstitial Convective Heat Transfer Coefficient and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
26.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1995,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
, Berlin.
27.
Wakao
,
N.
, and
Kaguei
,
S.
, 1982,
Heat and Mass Transfer in Packed Beds
,
Gordon and Beach
, New York, NY.
28.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
29.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
, 2002, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3781
3793
.
30.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
, 2001, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1153
1159
.
31.
Morgan
,
V. T.
, 1975, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
,”
Adv. Heat Transfer
0065-2717,
11
, pp.
199
264
.
32.
Frankel
,
N. A.
, and
Acrivos
,
A.
, 1968, “
Heat and Mass Transfer From Small Spheres and Cylinders Freely Suspended in Shear Flow
,”
Phys. Fluids
0031-9171,
11
, pp.
1913
1918
.
33.
Benard
,
C.
,
Gobin
,
C.
, and
Martinez
,
F.
, 1985, “
Melting in Rectangular Enclosures: Experiments and Numerical Simulations
,”
ASME J. Heat Transfer
0022-1481,
107
, pp.
794
803
.
34.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2004, “
A Two-Temperature Model for Solid/Liquid Phase Change in Metal Foams
,”
Proc. ASME Heat Transfer/Fluids Engineering Summer Conf.
,
ASME
, New York, ASME Paper No. HT-FED2004-56337,
Charlotte
, NC, July 2004.
You do not currently have access to this content.