In this paper, natural convection inside a two-dimensional cavity with a wavy right vertical wall has been carried out. The bottom wall is heated by a spatially varying temperature and other three walls are kept at constant lower temperature. The integral forms of the governing equations are solved numerically using finite-volume method in the non-orthogonal body-fitted coordinate system. The semi-implicit method for pressure linked equation algorithm with higher-order upwinding scheme are used. The streamlines and isothermal lines are presented for three different undulations (1, 2 and 3) with different Rayleigh number and a fluid having Prandtl number 0.71. Results are presented in the form of local and average Nusselt number distribution for a selected range of Rayleigh number (100-106).

1.
Yao
,
L. S.
, 1983, “
Natural Convection Along a Vertical Wavy Surface
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
465
468
.
2.
Adjlout
,
L.
,
Imine
,
O.
,
Azzi
,
A.
, and
Belkadi
,
M.
, 2002, “
Laminar Natural Convection in an Inclined Cavity With a Wavy Wall
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2141
2152
.
3.
Mahmud
,
S.
,
Das
,
P. K.
,
Hyder
,
N.
, and
Islam
,
A. K. M. S.
, 2002, “
Free Convection in an Enclosure With Vertical Wavy Walls
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
440
446
.
4.
Das
,
P. K.
, and
Mahmud
,
S.
, 2003, “
Numerical Investigation of Natural Convection Inside a Wavy Enclosure
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
397
406
.
5.
Dalal
,
A.
, and
Das
,
M. K.
, 2003, “
Laminar Natural Convection in a Complicated Cavity With Spatially Variable Upper Wall Temperature
,
Proceedings of 2003 ASME Summer Heat Transfer Conferences
, Las Vegas, July 21–23.
6.
Dalal
,
A.
, and
Das
,
M. K.
, 2005, “
Laminar Natural Convection in an Inclined Complicated Cavity With Spatially Variable Wall Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2986
3007
.
7.
Rathish Kumar
,
B. V.
,
Singh
,
P.
, and
Murthy
,
P. V. S. N.
, 1997, “
Effect of Surface Undulations on Natural Convection in a Porous Square Cavity
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
848
851
.
8.
Rathish Kumar
,
B. V.
, and
Gupta
,
S.
, 2005, “
Combined Influence of Mass and Thermal Stratification on Double-Diffusion Non-Darcian Natural Convection From a Wavy Vertical Wall to Porous Media
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
637
647
.
9.
Maliska
,
C. R.
, and
Raithby
,
G. D.
, 1984, “
A Method for Computing Three Dimensional Flows Using Non-Orthogonal Boundary-Fitted Co-Ordinates
,”
Int. J. Numer. Methods Fluids
0271-2091,
4
, pp.
519
537
.
10.
Özisik
,
M. N.
, 1994,
Finite Difference Methods in Heat Transfer
,
CRC
, London.
11.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, New York.
12.
Hayase
,
T.
,
Humphrey
,
J. C.
, and
Greif
,
R.
, 1992, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
0021-9991,
98
, pp.
108
118
.
13.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics, The Finite Volume Method
,
Longman
, Malaysia.
14.
Van Doormall
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
15.
de Vahl Davis
,
G.
, 1983, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
0271-2091,
3
, pp.
249
264
.
16.
Markatos
,
N. C.
, and
Perikleous
,
K. A.
, 1984, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
5
), pp.
755
772
.
17.
Hadjisophocleous
,
G. V.
,
Sousa
,
A. C. M.
, and
Venart
,
J. E. S.
, 1988, “
Prediction of Transient Natural Convection in Enclosures of Arbitrary Geometry Using a Nonorthogonal Numerical Model
,”
Numer. Heat Transfer
0149-5720,
13
, pp.
373
392
.
You do not currently have access to this content.