A spectral element method is presented to solve coupled radiative and conductive heat transfer problems in multidimensional semitransparent medium. The solution of radiative energy source is based on a second order radiative transfer equation. Both the second order radiative transfer equation and the heat diffusion equation are discretized by spectral element approach. Four various test problems are taken as examples to verify the performance of the spectral element method. The h-and the p-convergence characteristics of the spectral element method are studied. The convergence rate of p refinement for different values of Planck number follows the exponential law and is superior to that of h refinement. The spectral element method has good property to tolerate skewed meshes. The predicted dimensionless temperature distributions determined by the spectral element method agree well with the results in references. The presented method is very effective to solve coupled radiative and conductive heat transfer in semitransparent medium with complex configurations and demands little on the quality of mesh.

1.
Viskanta
,
R.
, and
Grosh
,
R. J.
, 1962, “
Heat Transfer by Simultaneous Conduction and Radiation in an Absorbing Medium
,”
J. Heat Transfer
0022-1481,
84
, pp.
63
72
.
2.
Yuen
,
W. W.
, and
Wong
,
L. W.
, 1980, “
Heat Transfer by Conduction and Radiation in a One-Dimensional Absorbing, Emitting and Anisotropically-Scattering Medium
,”
J. Heat Transfer
0022-1481,
102
, pp.
303
307
.
3.
Burns
,
S. P.
,
Howell
,
J. R.
, and
Klein
,
D. E.
, 1995, “
Empirical Evaluation of an Important Approximation for Combined-Mode Heat Transfer in a Participating Medium Using the Finite-Element Method
,”
Numer. Heat Transfer, Part B
1040-7790,
27
, pp.
309
322
.
4.
Yuen
,
W. W.
, and
Takara
,
E. E.
, 1988, “
Analysis of Combined Conductive-Radiative Heat Transfer in a Two-Dimensional Rectangular Enclosure With a Gray Medium
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
468
474
.
5.
Razzaque
,
M. M.
,
Howell
,
J. R.
, and
Klein
,
D. E.
, 1984, “
Coupled Radiative and Conductive Heat Transfer in a Two-Dimensional Rectangular Enclosure With a Gray Participating Media Using Finite Elements
,”
J. Heat Transfer
0022-1481,
106
, pp.
613
619
.
6.
Kim
,
T. Y.
, and
Baek
,
S. W.
, 1991, “
Analysis of Combined Conductive and Radiative Heat Transfer in a Two-Dimensional Rectangular Enclosure Using the Discrete Ordinates Method
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2265
2273
.
7.
Sakami
,
M.
,
Charette
,
A.
, and
Le Dez
,
V.
, 1996, “
Application of the Discrete Ordinates Method to Combined Conductive and Radiative Heat Transfer in a Two-Dimensional Complex Geometry
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
56
, pp.
517
533
.
8.
Talukdar
,
P.
, and
Mishra
,
S. C.
, 2002, “
Analysis of Conduction-Radiation Problem in Absorbing, Emitting and Anisotropically Scattering Media Using the Collapsed Dimension Method
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2159
2168
.
9.
Mishra
,
S. C.
,
Lankadasu
,
A.
, and
Beronov
,
K. N.
, 2005, “
Application of the Lattice Boltzmann Method for Solving the Energy Equation of a 2-D Transient Conduction-Radiation Problem
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3648
3659
.
10.
Cheong
,
K. B.
, and
Song
,
T. H.
, 1995, “
Examination of Solution Methods for the Second-Order Discrete Ordinate Formulation
,”
Numer. Heat Transfer, Part B
1040-7790,
27
, pp.
155
173
.
11.
Fiveland
,
W. A.
, and
Jessee
,
J. P.
, 1994, “
Finite Element Formulation of the Discrete-Ordinates Method for Multidimensional Geometries
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
426
433
.
12.
Fiveland
,
W. A.
, and
Jessee
,
J. P.
, 1995, “
Comparison of Discrete Ordinates Formulations for Radiative Heat Transfer in Multidimensional Geometries
,”
J. Thermophys. Heat Transfer
0887-8722,
9
, pp.
47
54
.
13.
Zhao
,
J. M.
, and
Liu
,
L. H.
, 2007, “
Second Order Radiative Transfer Equation and Its Properties of Numerical Solution Using Finite Element Method
,”
Numer. Heat Transfer, Part B
1040-7790,
51
, pp.
391
409
.
14.
Patera
,
A. T.
, 1984, “
A Spectral Element Method for Fluid Dynamics—Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
0021-9991,
54
, pp.
468
488
.
15.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
, 1999,
Spectral∕hp Element Methods for CFD
,
Oxford University Press
,
New York
.
16.
Henderson
,
R. D.
, and
Karniadakis
,
G. E.
, 1995, “
Unstructured Spectral Element Methods for Simulation of Turbulent Flows
,”
J. Comput. Phys.
0021-9991,
122
, pp.
191
217
.
17.
Hesthaven
,
J. S.
, and
Gottlieb
,
D.
, 1999, “
Stable Spectral Methods for Conservation Laws on Triangles With Unstructured Grids
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
175
, pp.
361
381
.
18.
Sherwin
,
S. J.
, and
Karniadakis
,
G. E.
, 1995, “
A Triangular Spectral Element Method; Applications to the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
123
, pp.
189
229
.
19.
Lee
,
U.
,
Kim
,
J.
, and
Leung
,
A. Y. T.
, 2000, “
The Spectral Element Method in Structural Dynamics
,”
Shock Vib. Dig.
0583-1024,
32
, pp.
451
465
.
20.
Giraldo
,
F. X.
, 2003, “
Strong and Weak Lagrange-Galerkin Spectral Element Methods for the Shallow Water Equations
,”
Comput. Math. Appl.
0898-1221,
45
, pp.
97
121
.
21.
Chauvière
,
C.
, and
Owens
,
R. G.
, 2001, “
A New Spectral Element Method for the Reliable Computation of Viscoelastic Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
3999
4018
.
22.
Komatitsch
,
D.
,
Barnes
,
C.
, and
Tromp
,
J.
, 2000, “
Simulation of Anisotropic Wave Propagation Based Upon a Spectral Element Method
,”
Geophysics
0016-8033,
65
, pp.
1251
1260
.
23.
Liu
,
L. H.
, 2005, “
Meshless Local Petrov-Galerkin Method for Solving Radiative Transfer Equation
,”
J. Thermophys. Heat Transfer
0887-8722,
20
, pp.
150
154
.
24.
Zhao
,
J. M.
, and
Liu
,
L. H.
, 2006, “
Least-Squares Spectral Element Method for Radiative Heat Transfer in Semitransparent Media
,”
Numer. Heat Transfer, Part B
1040-7790,
50
, pp.
473
489
.
25.
Nice
,
M. L.
, 1983, “
Application of Finite Elements to Heat Transfer in a Participating Medium
,”
Numerical Properties and Methodologies in Heat Transfer, Proceedings of the Second National Symposium
,
Hemisphere, Washington, DC
, pp.
497
514
.
You do not currently have access to this content.