Abstract

Numerical investigation of heat transfer and fluid flow over a backward-facing step (BFS), under the effect of suction and blowing, is presented. Here, suction/blowing is implemented on the bottom wall (adjacent to the step). The finite volume technique is used. The distribution of the modified coefficient of friction and Nusselt number at the top and bottom walls of the BFS are obtained. On the bottom wall, and inside the primary recirculation bubble, suction increases the modified coefficient of friction and blowing reduces it. However, after the point of reattachment, mass augmentation causes an increase in the modified coefficient of friction and mass reduction causes a decrease in modified coefficient of friction. On the top wall, suction decreases the modified coefficient of friction and blowing increases it. Local Nusselt number on the bottom wall is increased by suction and is decreased by blowing, and the contrary occurs on the top wall. The maximum local Nusselt number on the bottom wall coincides with the point of reattachment. High values of average Nusselt number on the bottom wall are identified at high Reynolds numbers and high suction bleed rates. However, the low values correspond to high blowing rates. The reattachment length and the length of the top secondary recirculation bubble are computed under the effect of suction and blowing. The reattachment length is increased by increasing blowing bleed rate and is decreased by increasing suction bleed rate. The spots of high Nusselt number, and low coefficient of friction, are identified by using contour maps.

1.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schönung
,
B.
, 1983, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid Mech.
0022-1120,
127
, pp.
473
496
.
2.
Gartling
,
D. K.
, 1990, “
A Test Problem for Outflow Boundary Condition-Flow Over a Backward Facing Step
,”
Int. J. Numer. Methods Fluids
0271-2091,
11
, pp.
953
967
.
3.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
59
, pp.
308
323
.
4.
Thangam
,
S.
, and
Knight
,
D.
, 1989, “
Effect of Step Height on the Separated Flow Past a Backward Facing Step
,”
Phys. Fluids A
0899-8213,
1
(
3
), pp.
604
606
.
5.
Vradis
,
G. C.
,
Outgen
,
V.
, and
Sanchez
,
J.
, 1992, “
Heat Transfer Over a Backward-Facing Step: Solutions to a Benchmark
,”
Benchmark Problems for Heat Transfer Codes ASME 1992
,
ASME
, New York, HTD-Vol.
222
, pp.
27
34
.
6.
Pepper
,
D. W.
,
Burton
,
K. L.
, and
Bruenckner
,
F. P.
, 1992, “
Numerical Simulation of Laminar Flow With Heat Transfer Over a Backward Facing Step
,”
Benchmark Problems for Heat Transfer Codes ASME 1992
,
ASME
, New York, HTD-Vol.
222
, pp.
21
26
.
7.
Vradis
,
G.
, and
VanNostrand
,
L.
, 1992, “
Laminar Coupled Flow Downstream an Asymmetric Sudden Expansion
,”
J. Thermophys. Heat Transfer
0887-8722,
6
(
2
), pp.
288
295
.
8.
Barbosa Saldana
,
J. G.
,
Anand
,
N. K.
, and
Sarin
,
V.
, 2005, “
Numerical Simulation of Mixed Convective Flow Over a Three-Dimensional Horizontal Backward Facing Step
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1027
1036
.
9.
Nie
,
J. H.
, and
Armaly
,
B. F.
, 2003, “
Three-Dimensional Flow Adjacent to Backward Facing Step
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
422
428
.
10.
Li
,
A.
, and
Armaly
,
B. F.
, 2002, “
Laminar Mixed Convection Adjacent to Three-Dimensional Backward-Facing Step
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
209
213
.
11.
Baek
,
B. J.
,
Armaly
,
B. F.
, and
Chen
,
T. S.
, 1993, “
Measurements in Buoyancy-Assisting Separated Flow Behind a Vertical Backward-Facing Step
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
403
408
.
12.
Abu-Mulaweh
,
H. I.
,
Armaly
,
B. F.
, and
Chen
,
T. S.
, 1995, “
Laminar Natural Convection Flow Over a Vertical Backward-Facing Step
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
895
901
.
13.
Abu-Mulaweh
,
H. I.
,
Armaly
,
B. F.
, and
Chen
,
T. S.
, 1994, “
Measurements in Buoyancy-Opposing Laminar Flow Over a Vertical Backward-Facing Step
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
247
250
.
14.
Ramachandran
,
N.
,
Armaly
,
B. F.
, and
Chen
,
T. S.
, 1985, “
Measurements and Predictions of Laminar Mixed Convection Flow Adjacent to a Vertical Surface
,”
ASME J. Heat Transfer
0022-1481,
107
, pp.
636
641
.
15.
Vogel
,
J. C.
, and
Eaton
,
J. K.
, 1985, “
Combined Heat and Fluid Dynamics Measurements Downstream of a Backward-Facing Step
,”
ASME J. Heat Transfer
0022-1481,
107
, pp.
922
929
.
16.
Nie
,
J. H.
, and
Armaly
,
B. F.
, 2004, “
Three-Dimensional Forced Convection in Plane Symmetric Sudden Expansion
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
836
839
.
17.
Abu-Mulaweh
,
H. I.
,
Armaly
,
B. F.
, and
Chen
,
T. S.
, 1993, “
Measurements of Laminar Mixed Convection Flow Over a Horizontal Forward-Facing Step
,”
J. Thermophys. Heat Transfer
0887-8722,
7
, pp.
569
573
.
18.
Abu-Mulaweh
,
H. I.
, 2003, “
A Review of Research on Laminar Mixed Convection Flow Over Backward and Forward-Facing Steps
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
897
909
.
19.
Williams
,
P. T.
, and
Baker
,
A. J.
, 1997, “
Numerical Simulations of Laminar Flow Over a 3D Backward Facing Step
,”
Int. J. Numer. Methods Fluids
0271-2091,
24
, pp.
1159
1183
.
20.
Tylli
,
N.
,
Kaiktsis
,
L.
, and
Ineichen
,
B.
, 2002, “
Sidewall Effects in Flow Over a Backward-Facing Step: Experiments and Numerical Solutions
,”
Phys. Fluids
1070-6631,
14
(
11
), pp.
3835
3845
.
21.
Chiang
,
T. P.
, and
Sheu
,
W. H.
, 1999, “
A Numerical Revisit of Backward-Facing Step Flow Problem
,”
Phys. Fluids
1070-6631,
11
, pp.
862
874
.
22.
Chiang
,
T. P.
, and
Sheu
,
W. H.
, 1999, “
Time Evolution of Laminar Flow Over a Three-Dimensional Backward Facing Step
,”
Int. J. Numer. Methods Fluids
0271-2091,
31
, pp.
721
745
.
23.
Chiang
,
T. P.
, and
Sheu
,
W. H.
, 1997, “
Vortical Flow Over a 3-D Backward-Facing Step
,”
Numer. Heat Transfer, Part A
1040-7782,
31
, pp.
167
192
.
24.
Kaiktsis
,
L.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
, 1996, “
Unsteadiness and Convective Instabilities in Two-Dimensional Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
321
, pp.
157
187
.
25.
Barkley
,
D.
,
Gomes
,
M. G. M.
, and
Henderson
,
R. D.
, 2002, “
Three-Dimensional Instability in Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
0022-1120,
473
, pp.
167
190
.
26.
Yang
,
J. T.
,
Tsai
,
B. B.
, and
Tsai
,
G. L.
, 1994, “
Separated-Reattaching Flow Over a Back Step With Uniform Normal Mass Bleed
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
29
35
.
27.
Batenko
,
S. R.
, and
Terekhov
,
V. I.
, 2006, “
Friction and Heat Transfer in a Laminar Separated Flow Behind a Rectangular Step With Porous Injection or Suction
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
47
(
1
), pp.
12
21
.
28.
Kaiktsis
,
L.
, and
Monkewitz
,
P.
, 2003, “
Global Destabilization of Flow Over a Backward-Facing Step
,”
Phys. Fluids
1070-6631,
15
(
12
), pp.
3647
3658
.
29.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
, New York.
30.
Bejan
,
A.
, 1994,
Convection Heat Transfer
,
Wiley
, New York.
31.
Lue
,
T.-S.
, and
Ho
,
C.-M.
, 2000, “
Control of Global Instability in a Non-Parallel Near Wake
,”
J. Fluid Mech.
0022-1120,
404
, pp.
345
378
.
32.
Abu-Nada
,
E.
, 2006, “
Entropy Generation Due to Heat and Fluid Flow in Backward Facing Step Flow With Various Expansion Ratios
,”
Int. J. Exergy
1742-8297,
3
(
4
), pp.
419
435
.
33.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Taylor and Francis Group
, New York.
34.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Wiley
, New York.
35.
Anderson
, Jr.,
J. D.
, 1995,
Computational Fluid Dynamics: The Basics With Applications
,
McGraw-Hill
, New York.
36.
Hoffmann
,
K. A.
, 1989,
Computational Fluid Dynamics for Engineers
,
The University of Texas at Austin, Texas.
37.
Abu-Nada
,
E.
, 2005, “
Numerical Prediction of Entropy Generation in Separated Flows
,”
Entropy
1099-4300,
7
(
4
), pp.
234
252
.
38.
Huerre
,
P.
, and
Monkewitz
,
P. A.
, 1985, “
Absolute and Convective Instabilities in Free Shear Layers
,”
J. Fluid Mech.
0022-1120,
159
, pp.
151
168
.
You do not currently have access to this content.