Two compressible turbulent boundary layers have been calculated by using direct numerical simulation. One case is a subsonic turbulent boundary layer with constant wall temperature for which the wall temperature is 1.58 times the freestream temperature and the other is a supersonic adiabatic turbulent boundary layer subjected to a supersonic freestream with a Mach number 1.8. The purpose of this study is to test the strong Reynolds analogy (SRA), the Van Driest transformation, and the applicability of Morkovin’s hypothesis. For the first case, the influence of the variable density effects will be addressed. For the second case, the role of the density fluctuations, the turbulent Mach number, and dilatation on the compressibility will be investigated. The results show that the Van Driest transformation and the SRA are satisfied for both of the flows. Use of local properties enable the statistical curves to collapse toward the corresponding incompressible curves. These facts reveal that both the compressibility and variable density effects satisfy the similarity laws. A study about the differences between the compressibility effects and the variable density effects associated with heat transfer is performed. In addition, the difference between the Favre average and Reynolds average is measured, and the SGS terms of the Favre-filtered Navier-Stokes equations are calculated and analyzed.

1.
Lele
,
S. K.
, 1994, “
Compressible Effects on Turbulence
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
211
254
.
2.
Bradshaw
,
P.
, 1977, “
Compressible Turbulent Shear Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
33
54
.
3.
Nicoud
,
N.
, and
Bradshaw
,
P.
, 2000, “
A Velocity Transformation for Heat and Mass Transfer
,”
Phys. Fluids
1070-6631,
12
(
1
), pp.
237
238
.
4.
Meignen
,
R.
, and
Berthoud
,
G.
, 1998, “
A Mixing Length Model for Strongly Heated Subsonic Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3373
3385
.
5.
Huang
,
P. G.
,
Bradshaw
,
P.
, and
Coakley
,
T. J.
, 1993, “
Skin Friction and Velocity Profile Family for Compressible Turbulent Boundary Layers
,”
AIAA J.
0001-1452,
31
(
9
), pp.
1600
1604
.
6.
Guarini
,
S. E.
,
Moser
,
R. D.
,
Shariff
,
K.
, and
Wray
,
A.
, 2000, “
Direct Numerical Simulation of a Supersonic Turbulent Boundary Layer at Mach 2.5
,”
J. Fluid Mech.
0022-1120,
414
, pp.
1
33
.
7.
Morinishi
,
Y.
,
Tamano
,
S.
, and
Nakabayashi
,
K.
, 2004, “
Direct Numerical Simulation of Compressible Turbulent Channel Flow Between Adiabatic and Isothermal Walls
,”
J. Fluid Mech.
0022-1120,
502
, pp.
273
308
.
8.
Wang
,
W.
, and
Pletcher
,
P. H.
, 1996, “
On the Large Eddy Simulation of a Turbulent Channel Flow With Significant Heat Transfer
,”
Phys. Fluids
1070-6631,
8
, pp.
3354
3366
.
9.
Maise
,
G.
, and
McDonald
,
H.
, 1968, “
Mixing Length and Kinematic Eddy Viscosity in a Compressible Boundary Layer
,”
AIAA J.
0001-1452,
6
, pp.
73
80
.
10.
Bradshaw
,
P.
, 1974, “
The Effect of Mean Compressible or Dilatation on the Turbulent Structure of Supersonic Boundary Layers
,”
J. Fluid Mech.
0022-1120,
63
, pp.
449
464
.
11.
Favre
,
A.
, 1983, “
Turbulence, Space-Time Statistical Properties and Behavior in Supersonic Flows
,”
Phys. Fluids
0031-9171,
26
, pp.
2851
2863
.
12.
Liu
,
K.
, 2006, “
Numerical Simulation of Turbulent Boundary Layers and Film Cooling
,” Ph.D. thesis, Iowa State University.
13.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
14.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional Step Method to Incompressible Flows
,”
J. Comput. Phys.
0021-9991,
59
, pp.
308
323
.
15.
Wall
,
C.
,
Pierce
,
C. D.
, and
Moin
,
P.
, 2002, “
A Semi-Implicit Method for Resolution of Acoustic Waves in Low Mach Number Flows
,”
J. Comput. Phys.
0021-9991,
181
, pp.
545
563
.
16.
Turkel
,
E.
, 1999, “
Preconditioning Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
385
416
.
17.
Pletcher
,
R. H.
, and
Chen
,
K.-H.
, 1993, “
On Solving the Compressible Navier-Stokes Equations for Unsteady Flows at Very Low Mach Numbers
,” AIAA Paper No. 3368.
18.
Liu
,
K.
, and
Pletcher
,
R. H.
, 2006, “
Inflow Conditions for the Large Eddy Simulation of Turbulent Boundary Layers, A Dynamic Recycling Procedure
,”
J. Comput. Phys.
0021-9991,
219
, pp.
1
6
.
19.
Spalart
,
P. R.
, 1988, “
Direct Simulation of a Turbulent Boundary Layer up to Reθ=1410
,”
J. Fluid Mech.
0022-1120,
187
, pp.
61
98
.
20.
DeGraaff
,
D. B.
, and
Eaton
,
J. K.
, 2000, “
Reynolds-Number Scaling of the Flat-Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
319
346
.
21.
Zeman
,
O.
, 1990, “
Dilatation Dissipation, The Concept and Application in Modeling Compressible Mixing Layers
,”
Phys. Fluids A
0899-8213,
2
, pp.
178
188
.
22.
Sarkar
,
S.
, 1992, “
The Pressure-Dilatation Correlation in Compressible Flows
,”
Phys. Fluids A
0899-8213,
4
, pp.
2674
2682
.
23.
Morkovin
,
M. V.
, 1962, “
Effects of Compressibility on Turbulent Flows
,”
Mécannique de la Turbulence
,
Favre
,
A.
, ed.,
Centre National de la Recherche Scientifique (CNRS)
, Paris, France, pp.
367
380
.
24.
Antonia
,
R. A.
, and
Kim
,
J.
, 1991, “
Turbulent Prandtl Number in the Near-Wall Region of a Turbulent Channel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1905
1908
.
25.
Yaglom
,
A. M.
, 1979, “
Similarity Laws for Constant-Pressure and Pressure-Gradient Turbulent Wall Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
11
, pp.
505
540
.
26.
Reynolds
,
A. J.
, 1975, “
The Prediction of Turbulent Prandtl and Schmidt Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
1055
1069
.
27.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
, 1991, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
0899-8213,
3
, pp.
2746
2757
.
28.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
0899-8213,
4
, pp.
633
635
.
29.
Vreman
,
A. W.
,
Geurts
,
B. J.
, and
Kuerten
,
H.
, 1995, “
Subgrid-Modeling in LES of Computational Flow
,”
Appl. Sci. Res.
0003-6994,
54
, pp.
191
203
.
30.
Panda
,
J.
, and
Seasholtz
,
R. J.
, 1995, “
Experimental Investigation of the Differences Between Reynolds’ Averaged and Favre Averaged Velocity in Supersonic Jets
,” AIAA Paper No. 2005-514.
You do not currently have access to this content.