Temperature-dependent viscosity effect in buoyancy driven flow of a gas or a liquid in an enclosure filled with a porous medium is studied numerically based on the general model of momentum transfer in a porous medium. The exponential form of viscosity-temperature relation is applied to examine three cases of viscosity-temperature relation: constant, decreasing, and increasing. Application of arithmetic and harmonic mean values of the viscosity is also investigated for their ability to represent the Nusselt number versus the effective Rayleigh number. Heat lines are illustrated for a more comprehensive investigation of the problem.

1.
Narasimhan
,
A.
, and
Lage
,
J. L.
, 2005, “
Variable Viscosity Forced Convection in Porous Medium Channels
,”
Handbook of Porous Media
,
K.
Vafai
, ed.,
Taylor & Francis
,
New York
, pp.
195
233
.
2.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
Springer-Verlag
,
New York
.
3.
Nield
,
D. A.
, 1994, “
Estimation of an Effective Rayleigh Number for Convection in a Vertically Inhomogeneous Porous-Medium or Clear Fluid
,”
Int. J. Heat Fluid Flow
0142-727X,
15
, pp.
337
340
.
4.
Nield
,
D. A.
, 1996, “
The Effect of Temperature-Dependent Viscosity on the Onset of Convection in a Saturated Porous Medium
,”
ASME Trans. J. Heat Transfer
0022-1481,
118
, pp.
803
805
.
5.
Chu
,
T. Y.
, and
Hickox
,
C. E.
, 1990, “
Thermal-Convection With Large Viscosity Variation in an Enclosure With Localized Heating
,”
ASME Trans. J. Heat Transfer
0022-1481,
112
, pp.
388
395
.
6.
Siebers
,
D. L.
,
Moffatt
,
R. F.
, and
Schwind
,
R. G.
, 1985, “
Experimental, Variable Properties Natural-Convection From a Large, Vertical, Flat Surface
,”
ASME Trans. J. Heat Transfer
0022-1481,
107
, pp.
124
132
.
7.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat-Transfer in Porous-Media
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
195
203
.
8.
Hsu
,
C. T.
, and
Cheng
,
P.
, 1990, “
Thermal Dispersion in a Porous-Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
1587
1597
.
9.
Guo
,
Z. L.
, and
Zhao
,
T. S.
, 2005, “
Lattice Boltzmann Simulation of Natural Convection With Temperature-Dependent Viscosity in a Porous Cavity
,”
Prog. Comput. Fluid Dyn.
1468-4349,
5
, pp.
110
117
.
10.
Prasad
,
V.
, and
Kulacki
,
F. A.
, 1984, “
Natural-Convection in a Rectangular Porous Cavity With Constant Heat-Flux on One Vertical Wall
,”
ASME Trans. J. Heat Transfer
0022-1481,
106
, pp.
152
157
.
11.
Merrikh
,
A. A.
, and
Mohamad
,
A. A.
, 2002, “
Non-Darcy Effects in Buoyancy Driven Flows in an Enclosure Filled With Vertically Layered Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4305
4313
.
12.
Antohe
,
B. V.
, and
Lage
,
J. L.
, 1997, “
The Prandtl Number Effect on the Optimum Heating Frequency of an Enclosure Filled With Fluid or With a Saturated Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
1313
1323
.
13.
Harms
,
T. M.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
, 1998, “
Effects of Temperature-Dependent Viscosity Variations and Boundary Conditions on Fully Developed Laminar Forced Convection in a Semicircular Duct
,”
ASME Trans. J. Heat Transfer
0022-1481,
120
, pp.
600
605
.
14.
Kakaç
,
S.
, 1987, “
The Effect of Temperature-Dependent Fluid Properties on Convective Heat Transfer
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakaç
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
15.
Bejan
,
A.
, 2004,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
.
16.
Nield
,
D. A.
,
Porneala
,
D. C.
, and
Lage
,
J. L.
, 1999, “
A Theoretical Study, With Experimental Verification, of the Temperature-Dependent Viscosity Effect on the Forced Convection Through a Porous Medium Channel
,”
ASME Trans. J. Heat Transfer
0022-1481,
121
, pp.
500
503
.
17.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
, 2003, “
Effects of Temperature-Dependent Viscosity in Forced Convection in a Porous Medium: Layered-Medium Analysis
,”
J. Porous Media
1091-028X,
6
, pp.
213
222
.
18.
Hooman
,
K.
, 2006 “
Entropy-Energy Analysis of Forced Convection in a Porous-Saturated Circular Tube Considering Temperature-Dependent Viscosity Effects
,”
Int. J. Exergy
1742-8297,
3
, pp.
436
451
.
19.
Hooman
,
K.
, and
Gurgenci
,
H.
, 2007, “
Effects of Temperature-Dependent Viscosity Variation on Entropy Generation, Heat, and Fluid Flow Through a Porous-Saturated Duct of Rectangular Cross-Section
,”
Appl. Math. Mech.
0253-4827,
28
, pp.
69
78
.
20.
Lauriat
,
G.
, and
Prasad
,
V.
, 1987, “
Natural-Convection in a Vertical Porous Cavity—A Numerical Study for Brinkman-Extended Darcy Formulation
,”
ASME Trans. J. Heat Transfer
0022-1481,
109
, pp.
688
696
.
You do not currently have access to this content.