A mathematical model predicting the heat transport capability in a miniature flat heat pipe (FHP) with a wired wick structure was developed to analytically determine its maximum heat transport rate including the capillary limit. The effects of gravity on the profile of the thin-film-evaporation region and the distribution of the heat flux along a curved surface were investigated. The heat transfer characteristics of the thin-film evaporation on the curved surface were also analyzed and compared with that on a flat surface. Combining the analysis on the thin-film-condensation heat transfer in the condenser, the model can be used to predict the total temperature drop between the evaporator and condenser in the FHP. In order to verify the model, an experimental investigation was conducted. The theoretical results predicted by the model agree well with the experimental data for the heat transfer process occurring in the FHP with the wired wick structure. Results of the investigation will assist in the optimum design of the curved-surface wicks to enlarge the thin-film-evaporation region and a better understanding of heat transfer mechanisms in heat pipes.

1.
Peterson
,
G. P.
, and
Ma
,
H. B.
, 1999, “
Temperature Response of Heat Transport in Micro Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
121
(
3
), pp.
438
445
.
2.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L. N.
,
Koo
,
J. M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2004, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
1057-7157,
13
(
5
), pp.
833
842
.
3.
Jiao
,
A. J.
,
Riegler
,
R.
,
Ma
,
H. B.
, and
Peterson
,
G. P.
, 2005, “
Thin Film Evaporation Effect on Heat Transport Capability in a Groove Heat Pipe
,”
Microfluid. Nanofluid.
1613-4982,
1
(
3
), pp.
227
233
.
4.
Jiao
,
A. J.
,
Ma
,
H. B.
, and
Critser
,
J. K.
, 2007, “
Evaporation Heat Transfer Characteristics of Tube Heat Pipes With Micro Trapezoidal Structure Liquid Wicks
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
15–16
), pp.
2905
2911
.
5.
Kim
,
S. J.
,
Seo
,
J. K.
, and
Do
,
K. H.
, 2003, “
Analytical and Experimental Investigation on the Operational Characteristics and the Thermal Optimization of a Miniature Heat Pipe With a Grooved Wick Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
11
), pp.
2051
2063
.
6.
Ma
,
H. B.
, and
Peterson
,
G. P.
, 1996, “
Experimental Investigation of the Maximum Heat Transport in Triangular Grooves
,”
ASME J. Heat Transfer
0022-1481,
118
(
4
), pp.
740
745
.
7.
Ma
,
H. B.
, and
Peterson
,
G. P.
, 1997, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
1
), pp.
90
97
.
8.
Hanlon
,
M. A.
, and
Ma
,
H. B.
, 2003, “
Evaporation Heat Transfer in Sintered Porous Media
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
644
652
.
9.
Peterson
,
G. P.
, 1994,
An Introduction to Heat Pipes
,
Wiley
,
New York
.
10.
Khrustalev
,
D.
, and
Faghri
,
A.
, 1994, “
Thermal Analysis of a Micro Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
116
(
1
), pp.
189
198
.
11.
Hopkins
,
R.
,
Faghri
,
A.
, and
Khrustalev
,
D.
, 1999, “
Flat Miniature Heat Pipes With Micro Capillary Grooves
,”
ASME J. Heat Transfer
0022-1481,
121
(
1
), pp.
102
109
.
12.
Stephan
,
P. C.
, and
Busse
,
C. A.
, 1993, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
2
), pp.
383
391
.
13.
Demsky
,
S. M.
, and
Ma
,
H. B.
, 2004, “
Thin Film Evaporation on a Curved Surface
,”
Microscale Thermophys. Eng.
1089-3954,
8
(
3
), pp.
285
299
.
14.
Jiao
,
A. J.
,
Han
,
X.
,
Critser
,
J. K.
, and
Ma
,
H. B.
, 2006, “
Numerical Investigations of Transient Heat Transfer Characteristics and Vitrification Tendencies in Ultra-Fast Cell Cooling Processes
,”
Cryobiology
0011-2240,
52
(
3
), pp.
386
392
.
15.
Chato
,
J. C.
, 1962, “
Laminar Condensation Inside Horizontal and Inclined Tubes
,”
ASHRAE J.
0001-2491,
4
(
1
), pp.
52
60
.
You do not currently have access to this content.