Owing to their high thermal conductivities, carbon nanotubes (CNTs) are promising for use in advanced thermal interface materials. While there has been much previous research on the properties of isolated CNTs, there are few thermal data for aligned films of single wall nanotubes. Furthermore, such data for nanotube films do not separate volume from interface thermal resistances. This paper uses a thermoreflectance technique to measure the volumetric heat capacity and thermal interface resistance and to place a lower bound on the internal volume resistance of a vertically aligned single wall CNT array capped with an aluminum film and palladium adhesion layer. The total thermal resistance of the structure, including volume and interface contributions, is 12m2KMW1. The data show that the top and bottom interfaces of the CNT array strongly reduce its effective vertical thermal conductivity. A low measured value for the effective volumetric heat capacity of the CNT array shows that only a small volume fraction of the CNTs participate in thermal transport by bridging the two interfaces. A thermal model of transport in the array exploits the volumetric heat capacity to extract an individual CNT-metal contact resistance of 10m2K1GW1 (based on the annular area Aa=πdb), which is equivalent to the volume resistance of 14nm of thermal SiO2. This work strongly indicates that increasing the fraction of CNT-metal contacts can reduce the total thermal resistance below 1m2KMW1.

1.
Osman
,
M. A.
, and
Srivastava
,
D.
, 2001, “
Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nanotechnology
0957-4484,
12
, pp.
21
21
.
2.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tománek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
4613
4616
.
3.
Maruyama
,
S.
, 2003, “
A Molecular Dynamics Simulation of Heat Conduction of a Finite Legth Single-Walled Carbon Nanotube
,”
Microscale Thermophys. Eng.
1089-3954,
7
, pp.
41
50
.
4.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K.
, and
Dai
,
H.
, 2006, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
1530-6984,
6
(
1
), pp.
96
100
.
5.
Lukes
,
J. R.
, and
Zhong
,
H.
, 2007, “
Thermal Conductivity of Individual Single-Wall Carbon Nanotubes
,”
ASME J. Heat Transfer
0022-1481,
129
(
6
), pp.
705
716
.
6.
Padgett
,
C. W.
, and
Brenner
,
D. W.
, 2004, “
Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nano Lett.
1530-6984,
4
(
6
), pp.
1051
1053
.
7.
Mingo
,
N.
, and
Broido
,
D. A.
, 2005, “
Length Dependence of Carbon Nanotube Thermal Conductivity and the ‘Problem of Long Waves’
,”
Nano Lett.
1530-6984,
5
(
7
), pp.
1221
1225
.
8.
Mingo
,
N.
, and
Broido
,
D. A.
, 2005, “
Carbon Nanotube Ballistic Thermal Conductance and Its Limits
,”
Phys. Rev. Lett.
0031-9007,
95
(
9
), pp.
096105
.
9.
Pan
,
R.
,
Xu
,
Z.
,
Zhu
,
Z.
, and
Wang
,
Z.
, 2007, “
Thermal Conductivity of Functionalized Single-Wall Carbon Nanotubes
,”
Nanotechnology
0957-4484,
18
(
28
), p.
285704
.
10.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
87
(
21
), p.
215502
.
11.
Fujii
,
M.
,
Zhang
,
X.
,
Xie
,
H.
,
Ago
,
H.
,
Takahashi
,
K.
,
Ikuta
,
T.
,
Abe
,
H.
, and
Shimizu
,
T.
, 2005, “
Measuring the Thermal Conductivity of a Single Carbon Nanotube
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
065502
.
12.
Hone
,
J.
,
Llaguno
,
M. C.
,
Nemes
,
N. M.
, and
Johnson
,
A. T.
, 2000, “
Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
0003-6951,
77
, pp.
666
668
.
13.
Yi
,
W.
,
Lu
,
L.
,
Dian-lin
,
Z.
,
Pan
,
Z. W.
, and
Xie
,
S. S.
, 1999, “
Linear Specific Heat of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
59
, pp.
R9015
R9018
.
14.
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Keblinski
,
R.
, and
Cahill
,
D.
, 2004, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
0021-8979,
95
, pp.
8136
8144
.
15.
Xue
,
Q. Z.
, 2006, “
Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
0957-4484,
17
(
6
), pp.
1655
1660
.
16.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
17.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnsond
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
2767
2769
.
18.
Guthy
,
C.
,
Du
,
F.
,
Brand
,
S.
,
Winey
,
K. I.
, and
Fischer
,
J. E.
, 2007, “
Thermal Conductivity of Single-Walled Carbon Nanotube∕PMMA Nanocomposites
,”
ASME J. Heat Transfer
0022-1481,
129
(
8
), pp.
1096
1099
.
19.
Hu
,
X.
,
Jiang
,
L.
, and
Goodson
,
K. E.
, 2004, “
Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions
,”
Proceedings of the Intersociety Conference on Thermal and Thermo-Mechanical Phenomena in Electronic Systems
, pp.
63
69
.
20.
Hu
,
X. J.
,
Padilla
,
A. A.
,
Xu
,
J.
,
Fisher
,
T. S.
, and
Goodson
,
K. E.
, 2006, “
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME J. Heat Transfer
0022-1481,
128
(
11
), pp.
1109
1113
.
21.
Yang
,
D. J.
,
Zhang
,
Q.
,
Chen
,
G.
,
Yoon
,
S. F.
,
Ahn
,
J.
,
Wang
,
S. G.
,
Zhou
,
Q.
,
Wang
,
Q.
, and
Li
,
J. Q.
, 2002, “
Thermal Conductivity of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
66
, p.
165440
.
22.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
, 2007, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
1
), pp.
92
100
.
23.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
1476-1122,
2
(
11
), pp.
731
734
.
24.
Zhang
,
G.
,
Mann
,
D.
,
Zhang
,
L.
,
Javey
,
A.
,
Li
,
Y.
,
Yenilmez
,
E.
,
Wang
,
Q.
,
McVittie
,
J. P.
,
Nishi
,
Y.
,
Gibbons
,
J.
, and
Dai
,
H.
, 2005, “
Ultra-High-Yield Growth of Vertical Single-Walled Carbon Nanotubes: Hidden Roles of Hydrogen and Oxygen
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
, pp.
16141
16145
.
25.
Chu
,
D.
,
Touzelbaev
,
M.
,
Babin
,
S.
,
Pease
,
R. F.
, and
Goodson
,
K. E.
, 2001, “
Thermal Conductivity Measurements of Thin-Film Resist
,”
J. Vac. Sci. Technol. B
1071-1023,
19
, pp.
2874
2877
.
26.
Kading
,
O. W.
,
Skurk
,
H.
, and
Goodson
,
K. E.
, 1994, “
Thermal Conduction in Metallized Silicon-Dioxide Layers on Silicon
,”
Appl. Phys. Lett.
0003-6951,
65
(
13
), pp.
1629
1631
.
27.
Smith
,
A.
,
Hostetler
,
D.
, and
Norris
,
P.
, 2000, “
Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique
,”
Microscale Thermophys. Eng.
1089-3954,
4
, pp.
51
60
.
28.
Stoner
,
R.
, and
Maris
,
H.
, 1993, “
Kapitza Conductance and Heat Flow Between Solids at Temperature From 50to300K
,”
Phys. Rev. B
0163-1829,
48
, pp.
16373
16387
.
29.
Paddock
,
C. A.
, and
Eesley
,
G. L.
, 1986, “
Transient Thermoreflectance From Thin Metal Films
,”
J. Appl. Phys.
0021-8979,
60
, pp.
285
290
.
30.
Schoenlein
,
R. W.
,
Lin
,
W. Z.
,
Fujimoto
,
J. G.
, and
Eesley
,
G. L.
, 1987, “
Femtosecond Studies of Nonequilibrium Electronic Processes in Metals
,”
Phys. Rev. Lett.
0031-9007,
58
(
16
), pp.
1680
1683
.
31.
Elsayed-Ali
,
H. E.
,
Norris
,
T. B.
,
Pessot
,
M. A.
, and
Mourou
,
G. A.
, 1987, “
Time-Resolved Observation of Electron-Phonon Relaxation in Copper
,”
Phys. Rev. Lett.
0031-9007,
58
(
12
), pp.
1212
1215
.
32.
Ujihara
,
K.
, 1972, “
Reflectivity of Metals at High Temperatures
,”
J. Appl. Phys.
0021-8979,
43
, pp.
2376
2383
.
33.
Guidotti
,
D.
, and
Wilman
,
J.
, 1991, “
Novel and Nonintrusive Optical Thermometer
,”
Appl. Phys. Lett.
0003-6951,
60
, pp.
524
526
.
34.
Clemens
,
B.
,
Eesley
,
G.
, and
Paddock
,
C.
, 1988, “
Time-Resolved Thermal Transport in Compositionally Modulated Metal Films
,”
Phys. Rev. B
0163-1829,
37
, pp.
1085
1096
.
35.
Bethe
,
H. A.
, 1944, “
Theory of Diffraction by Small Holes
,”
Phys. Rev.
0031-899X,
66
, pp.
163
182
.
36.
Jin
,
E. X.
, and
Xu
,
X.
, 2005, “
Radiation Transfer Through Nanoscale Apertures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
(
1–3
), pp.
163
173
.
37.
Hone
,
J.
,
Batlogg
,
B.
,
Benes
,
Z.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2000, “
Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes
,”
Science
0036-8075,
289
(
5485
), pp.
1730
1733
.
38.
Xu
,
J.
, and
Fisher
,
T.
, 2004, “
Thermal Contact Conductance Enhancement Using Carbon Nanotube Arrays
,” ASME Paper No. IMECE2004-60185.
39.
Hu
,
X. J.
,
Panzer
,
M. A.
, and
Goodson
,
K. E.
, 2007, “
Infrared Microscopy Thermal Characterization of Opposing Carbon Nanotube Arrays
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
91
93
.
40.
Zhong
,
H.
, and
Lukes
,
J. R.
, 2006, “
Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling
,”
Phys. Rev. B
0163-1829,
74
(
12
), p.
125403
.
41.
Schwartz
,
E.
, and
Pohl
,
R.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
42.
Phelan
,
P.
, 1998, “
Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
37
43
.
You do not currently have access to this content.