Falling liquid films are used in many industrial apparatuses. In many cases the film flow along a wall with topography is considered advantageous for intensification of the heat and mass transport. One of the promising types of the wall topography for the heat transfer intensification is comprised of minigrooves aligned along the main flow direction. The wall topography affects the development of wavy patterns on the liquid-gas interface. Linear stability analysis of the falling film flow based on the long-wave theory predicts that longitudinal grooves lead to the decrease in the disturbance growth rate and therefore stabilize the film. The linear stability analysis also predicts that the frequency of the fastest growing disturbance mode and the wave propagation velocity decrease on a wall with longitudinal minigrooves in comparison with a smooth wall. In the present work the effect of the longitudinal minigrooves on the falling film flow is studied experimentally. We use the shadow method and the confocal chromatic sensoring technique to study the wavy structure of falling films on smooth walls and on walls with longitudinal minigrooves. The measured film thickness profiles are used to quantify the effect of the wall topography on wave characteristics. The experimental results confirm the theoretical predictions.

1.
Chun
,
K. R.
, and
Seban
,
R. A.
, 1971, “
Heat Transfer to Evaporating Liquid Films
,”
ASME J. Heat Transfer
,
93
, pp.
391
396
. 0022-1481
2.
Shmerler
,
J. A.
, and
Mudawar
,
I.
, 1988, “
Local Evaporative Heat Transfer Coefficient in Turbulent Free–Falling Liquid Films
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
4
), pp.
731
742
.
3.
Nusselt
,
W.
, 1916, “
Die Oberflächenkondensation des Wasserdampfes
,”
Z. Ver. Dtsch. Ing.
0341-7255,
60
, pp.
541
546
and 569–575.
4.
Aktershev
,
S. P.
, and
Alekseenko
,
S. V.
, 2005, “
Influence of Condensation on the Stability of a Liquid Film Moving Under the Effect of Gravity and Turbulent Vapor Flow
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1039
1052
. 0017-9310
5.
Killion
,
J. D.
, and
Garimella
,
S.
, 2004, “
Simulation of Pendant Droplets and Falling Films in Horizontal Tube Absorbers
,”
ASME J. Heat Transfer
0022-1481,
126
(
6
), pp.
1003
1013
.
6.
Telles
,
A. S.
, and
Dukler
,
A. E.
, 1970, “
Statistical Characteristics of Thin, Vertical, Wavy Liquid Films
,”
Ind. Eng. Chem. Fundam.
0196-4313,
9
(
3
), pp.
412
421
.
7.
Shmerler
,
J. A.
, and
Mudawar
,
I.
, 1988, “
Local Heat Transfer Coefficient in Wavy Free-Falling Turbulent Liquid Films Undergoing Uniform Sensible Heating
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
67
77
. 0017-9310
8.
Alhusseini
,
A. A.
,
Tuzla
,
K.
, and
Chen
,
J. C.
, 1998, “
Falling Film Evaporation of Single Component Liquids
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1623
1632
. 0017-9310
9.
Adomeit
,
P.
, and
Renz
,
U.
, 2000, “
Hydrodynamics of Three-Dimensional Waves in Laminar Falling Films
,”
Int. J. Multiphase Flow
0301-9322,
26
, pp.
1183
1208
.
10.
Lel
,
V. V.
,
Al-Sibai
,
F.
,
Leefken
,
A.
, and
Renz
,
U.
, 2005, “
Local Thickness and Wave Velocity Measurement of Wavy Films With a Chromatic Confocal Imaging Method and a Fluorescence Intensity Technique
,”
Exp. Fluids
,
39
, pp.
856
864
. 0723-4864
11.
Miyara
,
A.
,
Nosoko
,
T.
, and
Nagata
,
T.
, 2002, “
Enhancement of Heat and Mass Transfer by Waves on Falling Liquid Films
,”
Proceedings of the 12th International Heat Transfer Conference
, Grenoble, France, Aug. 18–23, pp.
591
596
.
12.
Lozano Avilés
,
M.
,
Maun
,
A. H.
,
Iversen
,
V.
,
Auracher
,
H.
, and
Wozny
,
G.
, 2005, “
High Frequency Needle Probes for Time- and Space-Characteristic Measurements of Falling Films on Smooth and Enhanced Surfaces
,”
Proceedings of the Sixth World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics
, Matsushima, Miyagi, Japan, Apr. 17–21, Paper No. 7-b-9.
13.
Helbig
,
K.
,
Alexeev
,
A.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
, 2005, “
Evaporating of Falling and Shear-Driven Thin Films on Smooth and Grooved Surfaces
,”
Flow, Turbul. Combust.
,
75
, pp.
85
104
. 1386-6184
14.
Yih
,
C.-S.
, 1955, “
Stability of Parallel Laminar Flow With a Free Surface
,”
Q. Appl. Math.
,
13
, pp.
434
439
. 0033-569X
15.
Yih
,
C.-S.
, 1963, “
Stability of Liquid Flow Down an Inclined Plane
,”
Phys. Fluids
,
6
(
3
), pp.
321
334
. 1070-6631
16.
Alekseenko
,
S. V.
,
Nakoryakov
,
V. E.
, and
Pokusaev
,
B. G.
, 1994,
Wave Flow of Liquid Films
,
Begell House
,
New York
.
17.
Nosoko
,
T.
, and
Miyara
,
A.
, 2004, “
The Evolution and Subsequent Dynamics of Waves on a Vertically Falling Liquid Film
,”
Phys. Fluids
1070-6631,
16
, pp.
1118
1126
.
18.
Karimi
,
G.
, and
Kawaji
,
M.
, 1999, “
Flow Characteristics and Circulatory Motion in Wavy Falling Films With and Without Counter-Current Gas Flow
,”
Int. J. Multiphase Flow
,
25
, pp.
1305
1319
. 0301-9322
19.
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
, 2003, “
Analysis of Falling Film Evaporation on Grooved Surfaces
,”
J. Enhanced Heat Transfer
1065-5131,
10
(
4
), pp.
445
457
.
20.
Alexeev
,
A.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
, 2005, “
Marangoni Convection and Heat Transfer in Thin Liquid Films on Heated Walls With Topography: Experiments and Numerical Study
,”
Phys. Fluids
1070-6631,
17
,
062106
.
21.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
, 1997, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
0034-6861,
69
, pp.
931
980
.
22.
Vlachogiannis
,
M.
, and
Bontozoglou
,
V.
, 2001, “
Experiments on Laminar Film Flow Along a Periodic Wall
,”
J. Fluid Mech.
0022-1120,
457
, pp.
133
156
.
23.
Gramlich
,
C. M.
,
Kalliadasis
,
S.
,
Homsy
,
G. M.
, and
Messer
,
C.
, 2002, “
Optimal Leveling of Flow Over One-Dimensional Topography by Marangoni Stresses
,”
Phys. Fluids
1070-6631,
14
(
6
), pp.
1841
1850
.
24.
Zaitzsev
,
D. V.
,
Lozano Aviles
,
M.
,
Auracher
,
H.
, and
Kabov
,
O.
, 2007, “
Rupture of a Subcooled Liquid Film Falling Down a Heated Grooved Surface
,”
Microgravity Sci. Technol.
,
XIX
(
3/4
), pp.
71
74
. 0938-0108
25.
Gao
,
D.
,
Morley
,
N. B.
, and
Dhir
,
V.
, 2003, “
Numerical Simulation of Wavy Falling Film Flow Using VOF Method
,”
J. Comput. Phys.
0021-9991,
192
, pp.
624
642
.
You do not currently have access to this content.