Natural convection of non-Newtonian fluids along a vertical wavy surface with uniform surface temperature has been investigated using a modified power-law viscosity model. An important parameter of the problem is the ratio of the length scale introduced by the power-law and the wavelength of the wavy surface. In this model there are no physically unrealistic limits in the boundary-layer formulation for power-law, non-Newtonian fluids. The governing equations are transformed into parabolic coordinates and the singularity of the leading edge removed; hence, the boundary-layer equations can be solved straightforwardly by marching downstream from the leading edge. Numerical results are presented for the case of shear-thinning as well as shear-thickening fluid in terms of the viscosity, velocity, and temperature distribution, and for important physical properties, namely, the wall shear stress and heat transfer rates in terms of the local skin-friction coefficient and the local Nusselt number, respectively. Also results are presented for the variation in surface amplitude and the ratio of length scale to surface wavelength. The numerical results demonstrate that a Newtonian-like solution for natural convection exists near the leading edge where the shear-rate is not large enough to trigger non-Newtonian effects. After the shear-rate increases beyond a threshold value, non-Newtonian effects start to develop.

1.
Hinch
,
J.
, 2003, “
Non-Newtonian Geophysical Fluid Dynamics
,” 2003 Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institution, Woods Hole, MA.
2.
Acrivos
,
A.
, 1960, “
A Theoretical Analysis of Laminar Natural Convection Heat Transfer to Non-Newtonian Fluids
,”
AIChE J.
0001-1541,
16
, pp.
584
590
.
3.
Emery
,
A. F.
,
Chi
,
H. S.
, and
Dale
,
J. D.
, 1970, “
Free Convection Through Vertical Plane Layers of Non-Newtonian Power-Law Fluids
,”
ASME J. Heat Transfer
0022-1481,
93
, pp.
164
171
.
4.
Chen
,
T. V. W.
, and
Wollersheim
,
D. E.
, 1973, “
Free Convection at a Vertical Plate With Uniform Flux Conditions in Non-Newtonian Power-Law Fluids
,”
ASME J. Heat Transfer
0022-1481,
95
, pp.
123
124
.
5.
Dale
,
J. D.
, and
Emery
,
A. F.
, 1972, “
The Free Convection of Heat From a Vertical Plate to Several Non-Newtonian Pseudo Plastic Fluids
,”
ASME J. Heat Transfer
0022-1481,
94
, pp.
64
72
.
6.
Chen
,
T. V. W.
, and
Wollersheim
,
D. E.
, 1973, “
Free Convection at a Vertical Plate With Uniform Flux Conditions in Non-Newtonian Power-Law Fluids
,”
ASME J. Heat Transfer
0022-1481,
95
, pp.
123
124
.
7.
Shulman
,
Z. P.
,
Baikov
,
V. I.
, and
Zaltsgendler
,
E. A.
, 1976, “
An Approach to Prediction of Free Convection in Non-Newtonian Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
1003
1007
.
8.
Som
,
A.
, and
Chen
,
J. L. S.
, 1984, “
Free Convection of Non-Newtonian Fluids Over Non-Isothermal Two-Dimensional Bodies
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
791
794
.
9.
Haq
,
S.
,
Kleinstreuer
,
C.
, and
Mulligan
,
J. C.
, 1988, “
Transient Free Convection of a Non-Newtonian Fluid Along a Vertical Wall
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
604
607
.
10.
Huang
,
M. J.
,
Huang
,
J. S.
,
Chou
,
Y. L.
, and
Cheng
,
C. K.
, 1989, “
Effects of Prandtl Number on Free Convection Heat Transfer From a Vertical Plate to a Non-Newtonian Fluid
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
189
191
.
11.
Huang
,
M. J.
, and
Chen
,
C. K.
, 1990, “
Local Similarity Solutions of Free-Convective Heat Transfer From a Vertical Plate to Non-Newtonian Power-Law Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
119
125
.
12.
Kim
,
E.
, 1997, “
Natural Convection Along a Wavy Vertical Plate to Non-Newtonian Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
3069
3078
.
13.
Denier
,
J. P.
, and
Hewitt
,
R. E.
, 2004, “
Asymptotic Matching Constraints for a Boundary-Layer Flow of a Power-Law Fluid
,”
J. Fluid Mech.
0022-1120,
518
, pp.
261
279
.
14.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2006, “
Fluid Flow and Heat Transfer in Power-Law Fluids Across Circular Cylinders: Analytical Study
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
870
878
.
15.
Denier
,
J. P.
, and
Dabrowski
,
P. P.
, 2004, “
On the Boundary-Layer Equations for Power-Law Fluids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
, pp.
3143
3158
.
16.
Yao
,
L. S.
, and
Molla
,
M. M.
, 2008, “
Flow of a Non-Newtonian Fluid on a Flat Plate: I. Boundary Layer
,”
J. Thermophys. Heat Transfer
, in press.
17.
Molla
,
M. M.
, and
Yao
,
L. S.
, 2008, “
Flow of a Non-Newtonian Fluid on a Flat Plate: II. Heat Transfer
,”
J. Thermophys. Heat Transfer
, in press.
18.
Yao
,
L. S.
, and
Molla
,
M. M.
, 2008, “
Forced Convection of a Non-Newtonian Fluid on a Heated Flat Plate
,”
Int. J. Heat Mass Transfer
, in press.
19.
Molla
,
M. M.
, and
Yao
,
L. S.
, 2008, “
The Flow of Non-Newtonian Fluids on a Flat Plate With a Uniform Heat Flux
,”
ASME J. Heat Transfer
, in press.
20.
Yao
,
L. S.
, 1989, “
Natural Convection Along a Vertical Wavy Surface
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
465
468
.
21.
Moulic
,
S. G.
, and
Yao
,
L. S.
, 1989, “
Natural Convection Along a Wavy Surface With Uniform Heat Flux
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
1106
1108
.
22.
Yao
,
L. S.
, 2006, “
Natural Convection Along a Vertical Complex Wavy Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
281
286
.
23.
Molla
,
M. M.
,
Hossain
,
M. A.
, and
Yao
,
L. S.
, 2007, “
Natural Convection Along a Vertical Complex Wavy Surface With Uniform Heat Flux
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1403
1407
.
You do not currently have access to this content.