In this paper, the heat transfer characteristics of a circular air jet vertically impinging on a flat plate near to the nozzle (H/d=16, where H is the nozzle-to-target spacing and d is the diameter of the jet) are numerically analyzed. The relative performance of seven turbulent models for predicting this type of flow and heat transfer is investigated by comparing the numerical results with available benchmark experimental data. It is found that the shear-stress transport (SST) kω model and the large Eddy simulation (LES) time-variant model can give better predictions for the performance of fluid flow and heat transfer; especially, the SST kω model should be the best compromise between computational cost and accuracy. In addition, using the SST kω model, the effects of jet Reynolds number (Re), jet plate length-to-jet diameter ratio (L/d), target spacing-to-jet diameter ratio (H/d), and jet plate width-to-jet diameter ratio (W/d) on the local Nusselt number (Nu) of the target plate are examined; a correlation for the stagnation Nu is presented.

1.
San
,
J. Y.
,
Huang
,
C. H.
, and
Shu
,
M. H.
, 1997, “
Impingement Cooling of a Confined Circular Air Jet
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
6
), pp.
1355
1364
.
2.
Dano
,
B. P. E.
,
Liburdy
,
J. A.
, and
Kanokjaruvijit
,
K.
, 2005, “
Flow Characteristics and Heat Transfer Performances of a Semiconfined Impinging Array of Jets: Effect of Nozzle Geometry
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
3–4
), pp.
691
701
.
3.
Wang
,
S. J.
, and
Mujumdar
,
A. S.
, 2005, “
A Comparative Study of Five Low Reynolds Number k-ε Models for Impingement Heat Transfer
,”
Appl. Therm. Eng.
1359-4311,
25
(
1
), pp.
31
44
.
4.
San
,
J. Y.
, and
Shiao
,
W. Z.
, 2006, “
Effects of Jet Plate Size and Plate Spacing on the Stagnation Nusselt Number for a Confined Circular Air Jet Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
19–20
), pp.
3477
3486
.
5.
Zuckerman
,
N.
, and
Lior
,
N.
, 2005, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
0022-1481,
127
(
5
), pp.
544
552
.
6.
Thakre
,
S. S.
, and
Joshi
,
J. B.
, 2000, “
CFD Modeling of Heat Transfer in Turbulent Pipe Flows
,”
AIChE J.
0001-1541,
46
(
9
), pp.
1798
1812
.
7.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London
.
8.
Yakhot
,
V.
, and
Orszag
,
S. A.
, 1986, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
0885-7474,
1
(
1
), pp.
3
51
.
9.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z. G.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy Viscosity Model for High Reynolds-Number Turbulent Flows
,”
Comput. Fluids
0045-7930,
24
(
3
), pp.
227
238
.
10.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Cacada
.
11.
Menter
,
F. R.
, 1994, “
2-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
12.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
, 1975, “
Progress in Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
0022-1120,
68
, pp.
537
566
.
13.
Galperin
,
B. A.
, and
Orszag
,
S. A.
, 1993,
Large Eddy Simulation of Complex Engineering and Geophysical Flows
,
Cambridge University Press
,
Cambridge, England
.
You do not currently have access to this content.