A parametric study investigates the effects of wall shear on a two-dimensional turbulent boundary layer. A belt translating along the direction of the flow imparts the shear. Velocity measurements are performed at 12 streamwise locations with four surface-to-freestream velocity ratios (0, 0.38, 0.52, and 0.65) and a momentum-based Reynolds number between 770 and 1776. The velocity data indicate that the location of the “virtual origin” of the turbulent boundary layer “moves” downstream toward the trailing edge of the belt with increasing surface velocity. The highest belt velocity ratio (0.65) results in the removal of the “inner” region of the boundary layer. Measurements of the streamwise turbulent kinetic energy show an inner scaling at locations upstream and downstream of the belt, and the formation of a new self-similar structure on the moving surface itself. Good agreement is observed for the variation in the shape factor (H) and the skin friction coefficient (cf) with the previous studies. The distribution of the energy spectrum downstream of the belt indicates peak values concentrated around 1 kHz for the stationary belt case in the near wall region (30<y+<50). However, with increasing belt velocity, this central peak plateaus over a wide frequency range (0.9–4 kHz).

1.
Hamelin
,
J.
, and
Alving
,
A.
, 1996, “
A Low-Shear Turbulent Boundary Layer
,”
Phys. Fluids
0031-9171,
8
(
3
), pp.
789
804
.
2.
Favre
,
A.
, 1938, “
Contribution a l’etude experimentale des mouvements hydrodynamques a deux dimensions
,” These Universite de Paris thesis, University of Paris, France.
3.
Sakiadis
,
B.
, 1961, “
Boundary Layer on Continuous Solid Surface. III The Boundary Layer on a Continuous Cylindrical Surface
,”
AIChE J.
0001-1541,
7
, pp.
467
472
.
4.
Tsou
,
F.
,
Sparrow
,
E.
, and
Goldstein
,
R.
, 1967, “
Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
10
, pp.
219
235
.
5.
Tennant
,
J.
, and
Yang
,
T.
, 1973, “
Turbulent Boundary-Layer Flow From Stationary to Moving Surfaces
,”
AIAA J.
0001-1452,
11
, pp.
1156
1160
.
6.
Chew
,
Y.
,
Pan
,
L.
, and
Lee
,
T.
, 1998, “
Numerical Simulation of the Effect of a Moving Wall on Separation of Flow Past a Symmetrical Aerofoil
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
212
, pp.
69
77
.
7.
Munshi
,
S.
,
Modi
,
V.
, and
Yokomizo
,
T.
, 1999, “
Fluid Dynamics of Flat Plates and Rectangular Prisms in the Presence of Moving Surface Boundary-Layer Control
,”
J. Wind Eng. Ind. Aerodyn.
,
79
, pp.
37
60
.
8.
Singh
,
S.
,
Rai
,
L.
,
Puri
,
P.
, and
Bhatnagar
,
A.
, 2005, “
Effect of Moving Surface on the Aerodynamic Drag of Road Vehicles
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
219
, pp.
127
134
.
9.
Bassina
,
I.
,
Strelets
,
M.
, and
Spalart
,
P. R.
, 2001, “
Response of Simple Turbulence Models to Step Changes of Slip Velocity
,”
AIAA J.
0001-1452,
39
(
2
), pp.
201
210
.
10.
Brungart
,
T.
,
Lauchle
,
G.
,
Deutsch
,
D.
, and
Riggs
,
E.
, 2001, “
Effect of a Moving Wall on a Fully Developed, Equilibrium Turbulent Boundary Layer
,”
Exp. Fluids
0723-4864,
30
, pp.
418
425
.
11.
Srinivasan
,
V.
, and
Goldstein
,
R.
, 2003, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
267
273
.
12.
Han
,
S.
, and
Goldstein
,
R.
, 2007, “
Heat Transfer Study in a Linear Turbine Cascade Using a Thermal Boundary Layer Measurement Technique
,”
ASME J. Heat Transfer
0022-1481,
129
, p.
1384
.
13.
Fernholz
,
H.
, and
Finley
,
P.
, 1996, “
The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data
,”
Prog. Aerosp. Sci.
0376-0421,
32
, pp.
245
311
.
14.
Gersten
,
K.
, and
Herwig
,
H.
, 1992. “
Grundlagen der impuls
,”
Waerme-Stoffeubertrag.
(from
Boundary Layer Theory
, by
H.
Schlichting
and
K.
Gersten
, 2000, 8th ed.).
15.
Marusic
,
I.
, and
Kunkel
,
G.
, 2003, “
Streamwise Turbulence Intensity Formulation for Flat-Plate Boundary Layers
,”
Phys. Fluids
0031-9171,
15
(
8
), pp.
2461
2464
.
16.
Marusic
,
I.
,
Uddin
,
A.
, and
Perry
,
A.
, 1997, “
Similarity Law for the Streamwise Turbulence Intensity in Zero-Pressure-Gradient Turbulent Boundary Layers
,”
Phys. Fluids
0031-9171,
9
(
12
), pp.
3718
3726
.
17.
Purtell
,
L.
,
Klebanoff
,
P.
, and
Buckley
,
F.
, 1981, “
Turbulent Boundary Layer at Low Reynolds Number
,”
Phys. Fluids
0031-9171,
24
, p.
802
.
You do not currently have access to this content.