This article presents a numerical simulation of combined radiation and natural convection in a three-dimensional differentially heated rectangular cavity with two opposite side walls kept at a temperature ratio Th/Tc=2.0 and Tc=500K, with others walls insulated. A non-Boussinesq variable density approach is used to incorporate density changes due to temperature variation. The Navier–Stokes (NSE), temperature, as well as the radiative transfer (RTE) equations are solved numerically by a finite volume method, with constant thermophysical fluid properties (except density) for Rayleigh number Ra=105 and Prandtl number Pr=0.71. The convective, radiative, and total heat transfer on the isothermal and adiabatic walls is studied along with the flow phenomena. The results reveal an extraordinarily complex flow field, wherein, along with the main flow, many secondary flow regions and singular points exist at the different planes and are affected by the optical properties of the fluid. The heat transfer decreases with increase in optical thickness and the pure convection Nusselt number is approached as the optical thickness τ>100, but with substantially different velocity field. The wall emissivity has a strong influence on the heat transfer but the scattering albedo does not.

1.
De Vahl Davis
,
G.
, and
Jones
,
I. P.
, 1983, “
Natural Convection in a Square Cavity: A Comparison Exercise
,”
Int. J. Numer. Methods Fluids
0271-2091,
3
, pp.
227
248
.
2.
Markatos
,
N. C.
, and
Perikleous
,
K. A.
, 1984, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
755
772
.
3.
Demirdžić
,
I.
,
Lilek
,
Ž.
, and
Perić
,
M.
, 1992, “
Fluid Flow and Heat Transfer Test Problems for Non-Orthogonal Grids: Bench-mark Solutions
,”
Int. J. Numer. Methods Fluids
0271-2091,
15
, pp.
329
354
.
4.
Mallinson
,
G. D.
, and
De Vahl Davis
,
G.
, 1977, “
Three Dimensional Natural Convection in a Box: A Numerical Study
,”
J. Fluid Mech.
0022-1120,
83
, pp.
1
31
.
5.
Fusegi
,
T.
,
Hyun
,
J. M.
, and
Kuwahara
,
K.
, 1991, “
A Numerical Study of 3D Natural Convection in a Cube: Effect of the Horizontal Thermal Boundary Conditions
,”
Fluid Dyn. Res.
0169-5983,
8
, pp.
221
230
.
6.
Fusegi
,
T.
,
Hyun
,
J. M.
,
Kuwahara
,
K.
, and
Farouk
,
B.
, 1991, “
A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1543
1557
.
7.
Fusegi
,
T.
, and
Hyun
,
J. M.
, 1994, “
Laminar and Transitional Natural Convection in an Enclosure With Complex and Realistic Conditions
,”
Int. J. Heat Fluid Flow
0142-727X,
15
, pp.
258
268
.
8.
Tan
,
Z.
, and
Howell
,
J. R.
, 1991, “
Combined Radiation and Natural Convection in a Two-Dimensional Participating Square Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
785
793
.
9.
Yücel
,
A.
,
Acharya
,
S.
, and
Williams
,
M. L.
, 1989, “
Natural Convection and Radiation in a Square Enclosure
,”
Numer. Heat Transfer
0149-5720,
15
, pp.
261
278
.
10.
Krishnaprakas
,
C. K.
,
Narayana
,
K. B.
, and
Dutta
,
P.
, 1999, “
Interaction of Radiation With Natural Convection
,”
J. Thermophys. Heat Transfer
0887-8722,
13
, pp.
387
390
.
11.
Fusegi
,
T.
, and
Farouk
,
B.
, 1990, “
A Computational and Experimental Study of Natural Convection and Surface/Gas Radiation Interactions in a Square Cavity
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
802
804
.
12.
Colomer
,
G.
,
Costa
,
M.
,
Cònsul
,
R.
, and
Oliva
,
A.
, 2004, “
Three-Dimensional Numerical Simulation of Convection and Radiation in a Differentially Heated Cavity Using the Discrete Ordinates Method
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
257
269
.
13.
Borjini
,
M. N.
,
Aissia
,
H. B.
,
Halouani
,
K.
, and
Zeghmati
,
B.
, 2008, “
Effect of Radiation on the Three-Dimensional Buoyancy Flow in Cubic Enclosure Heated From Side
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
107
118
.
14.
Mahapatra
,
S. K.
,
Nanda
,
P.
, and
Sarkar
,
A.
, 2006, “
Interaction of Mixed Convection in Two-Sided Lid Driven Differentially Heated Square Enclosure With Radiation in Presence of Participating Medium
,”
Heat Mass Transfer
0947-7411,
42
, pp.
739
757
.
15.
Yan
,
W. -M.
, and
Li
,
H. -Y.
, 1999, “
Radiation Effects on Laminar Mixed Convection in an Inclined Square Duct
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
194
200
.
16.
Yan
,
W. -M.
, and
Li
,
H. -Y.
, 2001, “
Radiation Effects on Laminar Mixed Convection in a Vertical Square Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1401
1410
.
17.
Chiu
,
H. -C.
,
Jang
,
J. -H.
, and
Yan
,
W. -M.
, 2007, “
Mixed Convection Heat Transfer in Horizontal Rectangular Ducts With Radiation Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2874
2882
.
18.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
415
423
.
19.
Chui
,
E. H.
, and
Raithby
,
G. D.
, 1993, “
Computation of Radiant Heat Transfer on a Nonorthogonal Mesh Using the Finite-Volume Method
,”
Numer. Heat Transfer, Part B
1040-7790,
23
, pp.
269
288
.
20.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1994, “
Finite Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
419
425
.
21.
Chai
,
J. C.
,
Parthasarathy
,
G.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
, 1995, “
Finite Volume Radiative Heat Transfer Procedure for Irregular Geometries
,”
J. Thermophys. Heat Transfer
0887-8722,
9
, pp.
410
415
.
22.
Chai
,
J. C.
,
Patankar
,
S. V.
, and
Lee
,
H. S.
, 1994, “
Evaluation of Spatial Differencing Practices for the Discrete-Ordinates Method
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
140
144
.
23.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1998,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin, Heidelberg
.
24.
Eswaran
,
V.
, and
Prakash
,
S.
, 1998, “
A Finite Volume Method for Navier–Stokes Equation
,”
Proceedings of the Third Asian Computational Fluid Dynamics Conference
, Vol.
1
, pp.
127
136
.
25.
Sharma
,
A.
, and
Eswaran
,
V.
, 2003, “
A Finite Volume Method
,”
Computational Fluid Flow and Heat Transfer
,
Narosa Publishing House
,
New Delhi
, pp.
445
482
.
26.
Rahul
,
S.
,
Eswaran
,
V.
, and
Sunder
,
P. S.
, 2007, “
An Algorithm for Variable Density Flow
,”
Proceedings of ASME-JSME Thermal Engineering Summer Heat Transfer Conference
, Vancouver, BC, Canada.
27.
Kumar
,
P.
, and
Eswaran
,
V.
, 2007, “
A Hybrid Scheme for Spatial Differencing in the Finite Volume Method for Radiative Heat Transfer in Complex Geometries
,”
The Fifth International Symposium on Radiative Transfer
, Bodrum, Turkey.
28.
Mengüç
,
M. P.
, and
Viskanta
,
R.
, 1985, “
Radiative Transfer in Three-Dimensional Rectangular Enclosure
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
33
, pp.
533
549
.
29.
Shankar
,
P. N.
, and
Deshpande
,
M. D.
, 2000, “
Fluid Mechanics in the Driven Cavity
,”
Annu. Rev. Fluid Mech.
0066-4189,
32
, pp.
93
136
.
30.
Sheu
,
T. W. H.
, and
Tsai
,
S. F.
, 2002, “
Flow Topology in a Steady Three-Dimensional Lid Driven Cavity
,”
Comput. Fluids
0045-7930,
31
, pp.
911
934
.
You do not currently have access to this content.