Magnetic nanoparticles have been used in clinical and animal studies to generate localized heating for tumor treatments when the particles are subject to an external alternating magnetic field. Currently, since most tissue is opaque, the detailed information of the nanoparticle spreading in the tissue after injections cannot be visualized directly and is often quantified by indirect methods, such as temperature measurements, to inversely determine the particle distribution. In this study, we use a high resolution microcomputed tomography (microCT) imaging system to investigate nanoparticle concentration distribution in a tissue-equivalent agarose gel. The local density variations induced by the nanoparticles in the vicinity of the injection site can be detected and analyzed by the microCT system. Heating experiments are performed to measure the initial temperature rise rate to determine the nanoparticle-induced volumetric heat generation rates (or specific absorption rate (SARW/m3)) at various gel locations. A linear relationship between the measured SARs and their corresponding microCT pixel index numbers is established. The results suggest that the microCT pixel index number can be used to represent the nanoparticle concentration in the media since the SAR is proportional to the local nanoparticle concentration. Experiments are also performed to study how the injection amount, gel concentration, and nanoparticle concentration in the nanofluid affect the nanoparticle spreading in the gel. The nanoparticle transport pattern in gels suggests that convection and diffusion are important mechanisms in particle transport in the gel. Although the particle spreading patterns in the gel may not be directly applied to real tissue, we believe that the current study lays the foundation to use microCT imaging systems to quantitatively study nanoparticle distribution in opaque tumor.

1.
Hergt
,
R.
,
Andra
,
W.
,
d’Ambly
,
C. G.
,
Hilger
,
I.
,
Kaiser
,
W. A.
,
Richter
,
U.
, and
Schmidt
,
H.
, 1998, “
Physical Limits of Hyperthermia Using Magnetite Fine Particles
,”
IEEE Trans. Magn.
0018-9464,
34
, pp.
3745
3754
.
2.
Rosensweig
,
R. E.
, 2002, “
Heating Magnetic Fluid With Alternating Magnetic Field
,”
J. Magn. Magn. Mater.
0304-8853,
252
, pp.
370
374
.
3.
Moroz
,
P.
,
Jones
,
S. K.
, and
Gray
,
B. N.
, 2002, “
Magnetically Mediated Hyperthermia: Current Status and Future Directions
,”
Int. J. Hyperthermia
0265-6736,
18
(
4
), pp.
267
284
.
4.
Hilger
,
I.
,
Hergt
,
R.
, and
Kaiser
,
W. A.
, 2005, “
Towards Breast Cancer Treatment by Magnetic Heating
,”
J. Magn. Magn. Mater.
0304-8853,
293
, pp.
314
319
.
5.
Hergt
,
R.
,
Hiergeist
,
R.
,
Hilger
,
I.
,
Kaiser
,
W. A.
,
Lapatnikov
,
Y.
,
Margel
,
S.
, and
Richter
,
U.
, 2004, “
Maghemite nanoparticles With Very High AC-Losses for Application in RF-Magnetic Hyperthermia
,”
J. Magn. Magn. Mater.
0304-8853,
270
, pp.
345
357
.
6.
Wust
,
P.
,
Gneveckow
,
U.
,
Johannsen
,
M.
,
Bohmer
,
D.
,
Henkel
,
T.
,
Kahmann
,
F.
,
Sehouli
,
J.
,
Felix
,
R.
,
Ricke
,
J.
, and
Jordan
,
A.
, 2006, “
Magnetic Nanoparticles for Interstitial Thermotherapy—Feasibility, Tolerance and Achieved Temperatures
,”
Int. J. Hyperthermia
0265-6736,
22
(
8
), pp.
673
685
.
7.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Thiesen
,
B.
,
Taymoorian
,
K.
,
Cho
,
C. H.
,
Waldofner
,
N.
,
Scholz
,
R.
,
Jordan
,
A.
,
Loening
,
S. A.
, and
Wust
,
P.
, 2007, “
Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles—Feasibility, Imaging, and Three-Dimensional Temperature Distribution
,”
Eur. Urol.
0302-2838,
52
(
6
), pp.
1653
1662
.
8.
Zhang
,
A.
,
Mi
,
X.
,
Yang
,
G.
, and
Xu
,
X. L.
, 2009, “
Numerical Study of Thermally Targeted Liposomal Drug Delivery in Tumor
,”
J. Heat Transfer
0022-1481,
131
(
4
), p.
043209
.
9.
Salloum
,
M.
,
Ma
,
R.
,
Weeks
,
D.
, and
Zhu
,
L.
, 2008, “
Controlling Nanoparticle Delivery in Hyperthermia for Cancer Treatment: Experimental Study in Agarose Gel
,”
Int. J. Hyperthermia
0265-6736,
24
, pp.
337
345
.
10.
Salloum
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
, 2008, “
An In-Vivo Experimental Study of Temperature Elevations in Animal Tissue During Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
0265-6736,
24
, pp.
589
601
.
11.
Salloum
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
, 2009, “
Enhancement in Treatment Planning For Magnetic Nanoparticle Hyperthermia: Optimization of the Heat Absorption Pattern
,”
Int. J. Hyperthermia
0265-6736,
25
, pp.
309
321
.
12.
Masuko
,
Y.
,
Tazawa
,
K.
,
Viroonchatapan
,
E.
,
Takemori
,
S.
,
Shimizu
,
T.
,
Fujimaki
,
M.
,
Nagae
,
H.
,
Sato
,
H.
, and
Horikoshi
,
I.
, 1995, “
Possibility of Thermosensitive Magnetoliposomes as a New Agent for Electromagnetic Induced Hyperthermia
,”
Biol. Pharm. Bull.
0918-6158,
18
, pp.
1802
1804
.
13.
Lv
,
Y. -G.
,
Deng
,
Z. -S.
, and
Liu
,
J.
, 2005, “
3-D Numerical Study on the Induced Heating Effects of Embedded Micro/Nanoparticles on Human Body Subject to External Medical Electromagnetic Field
,”
IEEE Trans. Nanobiosci.
1536-1241,
4
, pp.
284
294
.
14.
Hergt
,
R.
,
Hiergeist
,
R.
,
Zeisberger
,
M.
,
Glockl
,
G.
,
Weitschies
,
W.
,
Ramirez
,
L. P.
,
Hilger
,
I.
, and
Kaiser
,
W. A.
, 2004, “
Enhancement of AC-Losses of Magnetic Nanoparticles for Heating Applications
,”
J. Magn. Magn. Mater.
0304-8853,
280
, pp.
358
368
.
15.
Johannsen
,
M.
,
Jordan
,
A.
,
Scholz
,
R.
,
Koch
,
M.
,
Lein
,
M.
,
Deger
,
S.
,
Roigas
,
J.
,
Jung
,
K.
, and
Loening
,
S. A.
, 2004, “
Evaluation of Magnetic Fluid Hyperthermia in a Standard Rat Model of Prostate Cancer
,”
J. Endourol
0892-7790,
18
(
5
), pp.
495
500
.
16.
Johannsen
,
M.
,
Thiesen
,
B.
,
Jordan
,
A.
,
Taymoorian
,
K.
,
Gneveckow
,
U.
,
Waldofner
,
N.
,
Scholz
,
R.
,
Koch
,
M.
,
Lein
,
M.
,
Jung
,
K.
, and
Loening
,
S. A.
, 2005, “
Magnetic Fluid Hyperthermia (MFH) Reduces Prostate Cancer Growth in the Orthotopic Dunning R3327 Rat Model
,”
Prostate
0270-4137,
64
(
3
), pp.
283
292
.
17.
Bruners
,
P.
,
Braunschweig
,
T.
,
Hodenius
,
M.
,
Pietsch
,
H.
,
Penzkofer
,
T.
,
Baumann
,
M.
,
Günther
,
R. W.
,
Schmitz-Rode
,
T.
, and
Mahnken
,
A. H.
, 2010, “
Thermoablation of Malignant Kidney Tumors Using Magnetic Nanoparticles: An In-Vivo Feasibility Study in a Rabbit Model
,”
Cardiovasc. Intervent Radiol.
0174-1551,
33
(
1
), pp.
127
134
.
18.
Corot
,
C.
,
Robert
,
P.
,
Idée
,
J. M.
, and
Port
,
M.
, 2006, “
Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging
,”
Adv. Drug Delivery Rev.
0169-409X,
58
, pp.
1471
1504
.
19.
Yu
,
Y.
, and
Sun
,
D.
, 2010, “
Superparamagnetic Iron Oxide Nanoparticle ‘Theranostics’ for Multimodality Tumor Imaging, Gene Delivery, Targeted Drug and Prodrug Delivery
,”
Expert Review of Clinical Pharmacology
,
3
(
1
), pp.
117
130
.
20.
Jain
,
R. K.
, 1999, “
Transport of Molecules, Particles, and Cells in Solid Tumors
,”
Annu. Rev. Biomed. Eng.
1523-9829,
1
, pp.
241
263
.
21.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2010, “
Analysis of Bioheat Transport Through a Dual Layer Biological Media
,”
J. Heat Transfer
0022-1481,
132
(
3
), p.
031101
.
22.
Chen
,
Z. J.
,
Broaddus
,
W. C.
,
Viswanathan
,
R. R.
,
Raghavan
,
R.
, and
Gillies
,
G. T.
, 2002, “
Intraparenchymal Drug Delivery via Positive-Pressure Infusion: Experimental and Modeling Studies of Poroelasticity in Brain Phantom Gels
,”
IEEE Trans. Biomed. Eng.
0018-9294,
49
, pp.
85
96
.
23.
Zhu
,
L.
,
Xu
,
L. X.
, and
Chencinski
,
N.
, 1998, “
Quantification of the 3-D Electromagnetic Power Absorption Rate in Tissue During Transurethral Prostatic Microwave Thermotherapy Using Heat Transfer Model
,”
IEEE Trans. Biomed. Eng.
0018-9294,
45
, pp.
1163
1172
.
24.
Wang
,
X.
,
Gu
,
H.
, and
Yang
,
Z.
, 2005, “
The Heating Effect of Magnetic Fluids in an Alternating Magnetic Field
,”
J. Magn. Magn. Mater.
0304-8853,
293
, pp.
334
340
.
25.
Nicholson
,
C.
, 1985, “
Diffusion From an Injected Volume of a Substance in Brain Tissue With Arbitrary Volume Fraction and Tortuosity
,”
Brain Res.
0006-8993,
333
, pp.
325
329
.
26.
Nicholson
,
C.
, and
Sykova
,
E.
, 1998, “
Extracellular Space Revealed by Diffusion Analysis
,”
Trends Neurosci.
0166-2236,
21
, pp.
207
215
.
You do not currently have access to this content.