A model for the thermal conductance of an interface is developed. It interpolates between the widely used acoustic mismatch model and diffuse mismatch model and accounts for the phonon dispersion curves of the materials in contact as calculated from first principles technique. In the present model, the interface morphology is modeled by assuming for the height a Gaussian probability density and a two-dimensional tangential autocorrelation function. The temperature as well as the interface conditions weight the probabilities for the diffuse scattering and the specular behavior of the phonon at the interface. The features of the developed expression for the transmission probability are found to be in excellent agreement with experimental results. The model is applied to predict the phonon events at the interfaces in the InN/GaN superlattice as functions of interface conditions. The results showed that in order to increase the thermal conductance of the InN/GaN superlattice one should decrease the interfaces’ tangential correlation and/or the interfaces’ root mean square roughness. The proposed model can be an efficient tool for engineering high thermal conductivity optoelectronic systems or efficient thermoelectric devices.

References

1.
Khalitnikov
,
I. M.
, 1952,
Zh. Eksp. Teor. Fiz.
,
22
, p.
687
.
2.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
, pp.
605
668
.
3.
Lin
,
M. E.
,
Huang
,
F. Y.
, and
Morkoc
H.
, 1994, “
Nonalloyed Ohmic Contacts on GaN Using InN/GaN Short
Period Superlattice
,”
Appl. Phys. Lett.
,
64
, pp.
2557
2559
.
4.
Lin
,
W.
,
Li
,
S. P.
, and
Kang
,
J. Y.
, 2010, “
Near-Ultraviolet Light Emitting Diodes Using Strained Ultrathin InN/GaN Quantum Well Grown by Metal Organic Vapor Phase Epitaxy
,”
Appl. Phys. Lett.
,
96
, p.
101115
.
5.
Lin
,
W.
,
Li
,
S. P.
, and
Kang
,
J. Y.
, 2009, “
Polarization Effects on Quantum Levels in InN/GaN Quantum Wells
,”
Nanotechnology
,
20
, pp.
485204
485208
.
6.
Ponce
,
F. A.
, and
Bour
,
D. P.
, 1997, “
Nitride-Based Semiconductors for Blue and Green Light-Emitting Devices
,”
Nature (London)
,
386
, pp.
351
359
.
7.
Balandin
,
A.
, and
Wang
,
K. L.
, 1998, “
Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free Standing Semiconductor Quantum Well
,”
Phys. Rev. B
,
58
, pp.
1544
1549
.
8.
Lyeo
,
H. K.
, and
Cahill
,
D. G.
, 2006, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
, p.
144301
.
9.
Klemens
,
P. G.
, 1966, “
Anharmonic Decay of Optical Phonons
,”
Phys. Rev.
,
148
, pp.
845
848
.
10.
Kazan
,
M.
,
Pereira
S.
,
Correia
,
M. R.
, and
Masri
,
P.
, 2008, “
Contribution of the Decay of Optical Phonons Into Acoustic Phonons to the Thermal Conductivity of AlN
,”
Phys. Rev. B
,
77
, p.
180302
.
11.
Kazan
,
M.
,
Pereira
,
S.
,
Coutinho
,
J.
,
Correia
,
M. R.
, and
Masri
,
P.
, 2008, “
Role of Optical Phonon in Ge Thermal Conductivity
,”
Appl. Phys. Lett.
,
92
, p.
211903
.
12.
Kazan
,
M.
,
Guisbiers
,
G.
,
Pereira
,
S.
,
Correia
,
M. R
,
Masri
,
P.
,
Bruyant
,
A.
,
Volz
,
S.
, and
Royer
,
P.
, 2010, “
Thermal Conductivity of Silicon Bulk and Nanowires: Effects of Isotopic Composition, Phonon Confinement, and Surface Roughness
,”
J. Appl. Phys.
,
107
, p.
083503
.
13.
Bungaro
,
C.
,
Rapcewicz
,
K.
, and
Bernhole
,
J.
, 2000, “
Ab Initio Phonon Dispersions of Wurtzite AlN, GaN, and InN
,”
Phys. Rev. B
,
61
, pp.
6720
6725
.
14.
Osborn
,
R.
,
Goremychkin
,
E. A.
,
Kolesnikov
,
A. I.
, and
Hinks
,
D. G.
, 2001, “
Phonon Density of States in MgB2
,”
Phys. Rev. Lett.
,
87
, pp.
17005
17008
.
15.
Weber
,
J.
,
Sandmann
,
W.
,
Dietsche
W.
, and
Kinder
,
H.
, 1978, “
Absence of Anomalous Kapitza Conductance on Freshly Cleaved Surfaces
,”
Phys. Rev. Lett.
,
40
, pp.
1469
1471
.
16.
Basso
,
H. C.
,
Dietsche
,
W.
, and
Kinder
,
H.
, 1984, “
Interaction of Adsorbed Atoms With Phonon Pulses
,”
Proceedings of the 17th International Conference on Low Temperature Physics
,
U.
Eckern
,
A.
Schmid
,
W.
Weber
, and
H.
Wühl
, eds.,
North-Holland, Amsterdam
, pp.
465
469
.
17.
Basso
,
H. C.
,
Dietsche
,
W.
,
Kinder
,
H.
, and
Leiderer
,
P.
, 1984,
Phonon Scattering in Condensed Matter
,
W.
Eisenmenger
,
K.
Lassmann
, and
S.
Döttinger
, eds.,
Springer
,
New York
, pp.
212
.
18.
Mok
,
E.
,
Burger
,
S.
,
Dötinger
,
S.
,
Lassmann
,
K.
, and
Eisenmenger
,
W.
, 1986, “
Effect of Laser Annealing on Specular and Diffuse Scattering of 285 GHz Phonons at Polished Silicon Surfaces
,”
Phys. Lett. A
,
11
, pp.
473
476
.
19.
Neeper
,
D. A.
, and
Dillinger
,
J. R.
, 1964, “
Thermal Resistance at Indium-Sapphire Boundaries Between 1.1 and 2.1 K
,”
Phys. Rev.
,
135
, pp.
1028A
1033A
.
20.
Wolfmeyer
,
M. W.
,
Fox
,
G. T.
, and
Dillinger
,
J. R.
, 1970, “
An Electron Contribution to the Thermal Conduction Across a Metal-Solid Dielectric Interface
,”
Phys. Lett. A
,
31
, pp.
401
402
.
21.
Park
,
B. S.
, and
Narahara
,
Y.
, 1971, “
Kapitza Resistance Between Dielectrics and Metals in the Normal and Superconducting States
,”
J. Phys. Soc. Jpn.
,
30
, pp.
760
767
.
22.
Schmidt
,
C.
, and
Umlauf
,
E.
, 1976, “
Thermal Boundary Resistance at Interfaces Between Sapphire and Indium
,”
J. Low Temp. Phys.
,
22
, pp.
597
611
.
23.
Sahling
,
S.
,
Engert
,
J.
,
Gladlun
,
A.
, and
Knöner
,
R.
, 1981, “
The Thermal Boundary Resistance Between Sapphire and Aluminum Monocrystals at Low Temperatures
,”
J. Low Temp. Phys.
,
45
, pp.
457
469
.
24.
Matsumoto
,
D. S.
,
Reynolds
,
C. L.
, and
Anderson
,
A. C.
, 1977, “
Thermal Boundary Resistance at Metal-Epoxy Interfaces
,”
Phys. Rev. B
,
16
, pp.
3303
3307
.
25.
Weis
,
O.
, 1969, “
Thermal Phonon Radiation
,”
Z. Angew. Phys.
,
26
, pp.
325
330
.
26.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1986,
Phonon Scattering in Condensed Matter
,
V. A. C.
Anderson
, and
J. P.
Wolfe
, eds.,
Springer
,
Berlin
, p.
228
.
27.
Eisenmenger
,
W.
, 1982,
Phonon Scattering in Condensed Matter
,
V A. C.
,
Anderson
, and
J. P.
Wolfe
, eds.,
Springer
,
Berlin
, p.
204
.
28.
Casimir
,
H. B. G.
, 1938, “
Note on the Conduction of Heat in Crystals
,”
Physica
,
5
, pp.
495
500
.
29.
Berman
,
R.
,
Simon
,
F. E.
, and
Ziman
,
J. M.
, 1953, “
The Thermal Conductivity of Diamond at Low Temperatures
,”
Proc. R. Soc. London, Ser. A
,
220
, pp.
171
183
.
30.
Ziman
,
J. M.
, 1967,
Electrons and Phonons
,
Oxford University, Press
,
New York
.
31.
Soffer
,
S. B.
, 1967, “
Statistical Model for the Size Effect in Electrical Conductivity
,”
J. Appl. Phys.
,
38
, pp.
1710
1715
.
32.
Kazan
,
M.
,
Bruyant
,
A.
,
Royer
,
P.
, and
Masri
,
P.
, 2010, “
Thermal Conductance of the Interfaces Between the III-Nitride Materials and Their substrates: Effects of Intrinsic Material Properties and Interface Conditions
,”
Surf. Sci. Rep.
,
65
, pp.
111
127
.
33.
Reddy
,
P.
,
Castelino
,
K.
, and
Majumdar
,
A.
, 2006, “
Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion
,”
Appl. Phys. Lett.
,
87
, p.
211908
.
34.
Gander
,
W.
, and
Gautschi
,
W.
, 2000, “
Adaptitve Quadrature–Revisited
,”
BIT
,
40
, pp.
84
101
.
35.
De Bellis
,
L.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2000, “
Variations of Acoustic and Diffuse Mismatch Models in Predicting Thermal-Boundary Resistance
,”
J. Thermophys. Heat Transfer
,
14
, pp.
144
150
.
36.
Chen
,
G.
, 1998, “
Thermal Conductivity and Ballistic Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
, pp.
14958
14973
.
37.
Lee
,
S.-M.
, and
Cahill
,
D. G.
, 1997, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
, pp.
2590
2595
.
38.
Alvarez
,
F. X.
,
Alvarez-Quintana
,
J.
,
Jou
,
D.
, and
Rodriguez Viejo
,
J.
, 2010, “
Analytical Expression for Thermal Conductivity of Superlattices
,”
J. Appl. Phys.
,
107
, p.
84303
.
You do not currently have access to this content.