Nanofluids have been proposed as a promising candidate for advanced heat transfer fluids in a variety of important engineering applications ranging from energy storage and electronics cooling to thermal processing of materials. In spite of the extensive studies in the literature, a consensus is lacking on if and how the dispersed nanoparticles alter the thermal transport in convective flows. In this work, an experimental investigation was conducted to study single-phase forced convection of Al2O3-water nanofluid in a circular minichannel with a 1.09 mm inner diameter. The friction factor and convection heat transfer coefficients were measured for nanofluids of various volume concentrations (up to 5%) and were compared with those of the base fluid. The Reynolds number (Re) varied from 600 to 4500, covering the laminar, transition, and early fully developed turbulent regions. It was found that in the laminar region, the nanofluids exhibit pronounced entrance region behaviors possibly due to the flattening of the velocity profile caused by the flow-induced particle migration. Three new observations were made for nanofluids in the transition and turbulent regions: (1) The onset of transition to turbulence is delayed; (2) both the friction factor and the convective heat transfer coefficient are below those of water at the same Re in the transition flow; and (3) once fully developed turbulence is established, the difference in the flow and heat transfer of nanofluids and water will diminish. A simple scaling analysis was used to show that these behaviors may be attributed to the variation in the relative size of the nanoparticle with respect to the turbulent microscales at different Re. The results from this work suggest that the particle-fluid interaction has a significant impact on the flow physics of nanofluids, especially in the transition and turbulent regions. Consequently, as a heat transfer fluid, nanofluids should be used in either the laminar flow or the fully developed turbulent flow at sufficiently high Re in order to yield enhanced heat transfer performance.

1.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
ASME
,
New York
, pp.
99
105
.
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
, and
Keblinski
,
P.
, 2004,
Nanofluids in Encyclopedia of Nanoscience and Nanotechnology
,
American Scientific
,
Los Angeles, CA
, Vol.
6
, p.
757
.
3.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
219
246
.
4.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
, 2005, “
Nanofluids for Thermal Transport
,”
Mater. Today
1369-7021,
8
(
6
), pp.
36
44
.
5.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
, 2006, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
0145-7632,
27
, pp.
3
19
.
6.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
, 2008, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
0145-7632,
29
, pp.
432
460
.
7.
Cheng
,
L. X.
,
Filho
,
E. P. B.
, and
Thome
,
J. R.
, 2008, “
Nanofluid Two-Phase Flow and Thermal Physics: A New Research Frontier of Nanotechnology and Challenges
,”
J. Nanosci. Nanotechnol.
1533-4880,
8
, pp.
3315
3332
.
8.
Li
,
Q.
, and
Xuan
,
Y.
, 2002, “
Convective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
45
, pp.
408
416
.
9.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
156
.
10.
Yang
,
Y.
,
Zhang
,
Z.
,
Grulke
,
E. A.
,
Anderson
,
W. B.
, and
Wu
,
G.
, 2005, “
Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1107
1116
.
11.
Wen
,
D. S.
, and
Ding
,
Y. L.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at Entrance Region Under Laminar Flow Condition
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5181
5188
.
12.
Ding
,
Y. L.
,
Alias
,
H.
,
Wen
,
D. S.
, and
Williams
,
R. A.
, 2006, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
240
250
.
13.
He
,
Y. R.
,
Jin
,
Y.
,
Chen
,
H. S.
,
Ding
,
Y. L.
,
Can
,
D. Q.
, and
Lu
,
H. L.
, 2007, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2272
2281
.
14.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. Gh.
, 2007, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
203
210
.
15.
Chen
,
H.
,
Yang
,
W.
,
He
,
Y.
,
Ding
,
Y. L.
,
Zhang
,
L.
,
Tan
,
C.
,
Lapkin
,
A. A.
, and
Bavykin
,
D. V.
, 2008, “
Heat Transfer and Flow Behavior of Aqueous Suspensions of Titanate Nanotubes
,”
Powder Technol.
0032-5910,
183
, pp.
63
72
.
16.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids in Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042412
.
17.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
, 2003, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
0947-7411,
39
, pp.
775
784
.
18.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
, 2008, “
Effect of Thermophysical Properties Models on the Predicting of the Convective Heat Transfer Coefficient for Low Concentration Nanofluid
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
, pp.
1320
1326
.
19.
Wen
,
D. S.
, and
Ding
,
Y. L.
, 2005, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
855
864
.
20.
Nnanna
,
A. G.
, 2007, “
Experimental Model of Temperature-Driven Nanofluid
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
697
704
.
21.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
, 2003, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3639
3653
.
22.
Wen
,
D. S.
, and
Ding
,
Y. L.
, 2005, “
Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels
,”
Microfluid. Nanofluid.
1613-4982,
1
, pp.
183
189
.
23.
Mansour
,
R. B.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
, 2007, “
Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer With Nanofluids
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
240
249
.
24.
Kim
,
J.
,
Kang
,
Y. T.
, and
Choi
,
C. K.
, 2004, “
Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids
,”
Phys. Fluids
1070-6631,
16
, pp.
2395
2401
.
25.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
, 2007, “
Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4003
4010
.
26.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2009, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Flow Regime
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
193
199
.
27.
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2009, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in Developing Region
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2189
2195
.
28.
Lai
,
W. Y.
,
Vind
,
S.
,
Phelan
,
P. E.
, and
Prasher
,
R.
, 2009, “
Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1.02-mm Tube
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
112401
.
29.
Mills
,
P.
, and
Snabre
,
P.
, 1995, “
Rheology and Structure of Concentrated Suspensions of Hard Sphere, Shear Induced Particle Migration
,”
J. Phys. II
1155-4312,
5
, pp.
1597
1608
.
30.
Sharma
,
K. V.
,
Sundar
,
L. S.
, and
Sharma
,
P. K.
, 2009, “
Estimation of Heat Transfer Coefficient and Friction Factor in the Transition Flow With Low Volume Concentration of Al2O3 Nanofluid Flowing in a Circular Tube and With Twisted Tape Insert
,”
Int. Commun. Heat Mass Transfer
0735-1933,
36
, pp.
503
507
.
31.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L. W.
, and
Buongiorno
,
J.
, 2009, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2042
2048
.
32.
Torii
,
S.
, and
Yang
,
W. -J.
, 2009, “
Heat Transfer Augmentation of Aqueous Suspensions of Nanodiamonds in Turbulent Pipe Flow
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
043203
.
33.
Duangthongsuk
,
W.
, and
Wongwises
,
S.
, 2010, “
An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under a Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
334
344
.
34.
Jung
,
J. Y.
,
Oh
,
H. S.
, and
Kwak
,
H. Y.
, 2009, “
Forced Convective Heat Transfer of Nanofluids in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
466
472
.
35.
Wu
,
X.
,
Wu
,
H.
, and
Cheng
,
P.
, 2009, “
Pressure Drop and Heat Transfer of Al2O3 Nanofluids Through Silicon Microchannels
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
105020
.
36.
Batchelor
,
G. K.
, 1977, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
0022-1120,
83
, pp.
97
117
.
37.
Pak
,
B. C.
, and
Ho
,
Y. I.
, 1998, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
0891-6152,
11
, pp.
151
170
.
38.
Liu
,
D.
, and
Garimella
,
S. V.
, 2004, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
65
72
.
39.
Blevins
,
R. D.
, 1992,
Applied Fluid Dynamics Handbook
,
Krieger
,
Malabar, FL
.
40.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
41.
Taylor
,
J. R.
, 1997,
An Introduction to Error Analysis
,
University Science Books
,
Sausalito, California
.
42.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
43.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts
,”
Advances in Heat Transfer
,
Academic
,
New York
, Suppl. 1.
44.
Stephan
,
K.
, and
Preuber
,
P.
, 1979, “
Warmeubergang und Maximale Warmestromdichte Beim Behaltersieden Binarer und Ternarer Flussigkeitsgemische
,”
Chem.-Ing.-Tech.
0009-286X,
51
, p.
37
.
45.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
, 1987,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
46.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
, 1930,
Heat Transfer in Automobile Radiators of the Tubular Type
, Vol.
2
,
University of California
,
Berkeley
, pp.
443
461
.
47.
Hausen
,
H.
, 1959, “
Neue Gleichungen fur die Wameiibertragung bei Freier oder Erzwungerner Stromung
,”
Allg. Warmetchn.
,
9
, pp.
75
79
.
48.
Gnielinkski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
, pp.
359
367
.
49.
Sieder
,
E. N.
, and
Tate
,
G. E.
, 1936, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
0019-7866,
28
, pp.
1429
1435
.
50.
Leighton
,
D.
, and
Acrivos
,
A.
, 1987, “
The Shear-Induced Migration of Particles in Concentrated Suspensions
,”
J. Fluid Mech.
0022-1120,
181
, pp.
415
439
.
51.
Phillips
,
R. J.
,
Armstrong
,
R. C.
,
Brown
,
R. A.
,
Graham
,
A. L.
, and
Abbott
,
J. R.
, 1992, “
A Constitutive Equation for Concentrated Suspensions That Accounts for Shear-Induced Particle Migration
,”
Phys. Fluids A
0899-8213,
4
, pp.
30
40
.
52.
Bhadani
,
M. M.
, and
Ludlow
,
N. G. T.
, 1961, “
Precipitation of Sub-Micron Dust in Still Air by Cloud-Size Water Droplets
,”
Nature (London)
0028-0836,
190
, pp.
974
976
.
53.
Hetsroni
,
G.
, and
Sokolov
,
M.
, 1971, “
Distribution of Mass, Velocity, and Intensity of Turbulence in a Two-Phase Turbulent Jet
,”
ASME J. Appl. Mech.
0021-8936,
38
, pp.
315
327
.
54.
Rogers
,
C. B.
, and
Eaton
,
J. K.
, 1991, “
The Effect of Small Particles on Fluid Turbulence in a Flat-Plate, Turbulent Boundary in Air
,”
Phys. Fluids A
0899-8213,
3
, pp.
928
937
.
55.
Kulick
,
J. D.
,
Fessler
,
J. R.
, and
Eaton
,
J. K.
, 1994, “
Particle Response and Turbulence Modification in Fully Developed Channel Flow
,”
J. Fluid Mech.
0022-1120,
277
, pp.
109
134
.
56.
Pan
,
Y.
, and
Banerjee
,
S.
, 1996, “
Numerical Simulation of Particle Interactions With Wall Turbulence
,”
Phys. Fluids
1070-6631,
8
, pp.
2733
2755
.
57.
Elghobashi
,
S. E.
, and
Abou-Arab
,
T. W.
, 1983, “
A Two-Equation Turbulence Model for Two-Phase Flows
,”
Phys. Fluids
1070-6631,
26
, pp.
931
938
.
58.
Rizk
,
M. A.
, and
Elghobashi
,
S. E.
, 1985, “
The Motion of a Spherical Particle Suspended in a Turbulent Flow Near a Plane Wall
,”
Phys. Fluids
1070-6631,
28
, pp.
806
817
.
59.
Gore
,
R. A.
, and
Crowe
,
C. T.
, 1989, “
Effect of Particle Size on Modulating Turbulent Intensity
,”
Int. J. Multiphase Flow
0301-9322,
15
, pp.
279
285
.
60.
Hetsroni
,
G.
, 1989, “
Particle-Turbulence Interaction
,”
Int. J. Multiphase Flow
0301-9322,
15
, pp.
735
746
.
You do not currently have access to this content.