The main objective of this paper is to solve the inverse convection heat transfer problems with particle swarm optimization method. An enhanced particle swarm optimization (EPSO) algorithm is proposed to overcome the shortcoming of earlier convergence of standard PSO algorithms. The performance of EPSO is tested by some benchmark functions; it is shown that EPSO has a strong antilocal trap capability especially for high dimensional multimodal optimization problems. At last, EPSO is used to identify the unknown boundary heat flux in a channel flow. According to the computational results of four test problems, it is clear that the proposed EPSO algorithm is able to estimate the unknown heat flux accurately even when the input data contain measurement error.

References

1.
Marquardt
,
D. W.
, 1963, “
An Algorithm for Least Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math
,
11
, pp.
431
441
.
2.
Alifanov
,
O. M.
, 1963,
Inverse Heat Transfer Problems
,
Springer Verlag
,
Berlin
.
3.
Huang
,
C. H.
, and
Yan
,
J. Y.
, 1995, “
An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity
,”
Int. J. Heat Mass Transfer
,
38
, pp.
3443
3441
.
4.
Huang
,
C. H.
, and
Ozisik
,
M. N.
, 1992, “
Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through a Parallel Pale Duct
,”
Numer. Heat Transfer, Part A
,
21
, pp.
2615
2618
.
5.
Bokar
,
J. C.
, and
Ozisik
,
M. N.
, 1995, “
An Inverse Analysis for Estimating the Time-Varying Inlet Temperature in Laminar Flow Inside a Parallel Plate Duct
,”
Int. J. Heat Mass Transfer
,
38
, pp.
39
45
.
6.
Colaco
,
M. J.
, and
Orlande
,
H. R. B.
, 2001, “
Inverse Forced Convection Problem of Simultaneous Estimation of Two Boundary Heat Flux in Irregularly Shaped Channels
,”
Numer. Heat Transfer, Part A
,
39
, pp.
737
760
.
7.
Ding
,
P.
, and
Tao
,
W. Q.
, 2009, “
Estimation of Unknown Boundary Heat Flux in Laminar Circular Pipe Flow Using Functional Optimization Approach: Effects of Reynolds Number
,”
ASME Trans. J. Heat Transfer
,
131
, p.
021701
8.
Chen
,
C. K.
,
Wu
,
L. W.
, and
Yang
,
Y. T.
, 2006, “
Estimation of Time-Varying Inlet Temperature and Heat Flux in Turbulent Circular Pipe Flow
,”
ASME Trans. J. Heat Transfer
,
128
, pp.
44
52
.
9.
Li
,
H. Y.
, and
Yan
,
W. M.
, 2003, “
Identification of Wall Heat Flux for Turbulent Forced Convection by Inverse Analysis
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1041
1048
.
10.
Su
,
J.
, and
Neto
,
A. J. S.
, 2001, “
Simultaneous Estimation of Inlet Temperature and Wall Heat Flux in Turbulent Circular Pipe Flow
,”
Numer. Heat Transfer, Part A
,
40
, pp.
751
766
.
11.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor
.
12.
Kennedy
,
J.
, and
Eberhart
,
R. C.
, 1995, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Joint Conference on Neural Networks
, pp.
1942
1948
.
13.
Liu
,
F. B.
, 2008, “
A Modified Genetic Algorithm for Solving the Heat Transfer Problem of Estimating Plan Heat Source
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3745
3752
.
14.
Adili
,
A.
,
Hasni
,
N.
,
Kerkeni
,
C.
, and
Nasrallah
,
S. B.
, 2010, “
An Inverse Problem Based on Genetic Algorithm to Estimate Thermophysical Properties of Fouling
,”
Int. J. Therm. Sci.
,
51
, pp.
1
12
.
15.
Lee
,
K. H.
,
Baek
,
S. W.
, and
Kim
,
K. W.
, 2008, “
Inverse Radiation Analysis Using Repulsive Particle Swarm Optimization Algorithm
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2772
2783
.
16.
Eberhart
,
R. C.
, and
Shi
,
Y.
, 1998, “
A Modified Particle Swarm Optimizer
,”
Proceedings of the IEEE International Conference on Computational Intelligence
, pp.
69
73
.
17.
Liang
,
J. J.
,
Qin
,
A. K.
,
Suganthan
,
P. N.
, and
Baskar
,
S.
, 2006, “
Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions
,”
IEEE Trans. Evol. Comput.
,
6
, pp.
281
295
.
18.
Ho
,
S. Y.
,
Shu
,
L. S.
, and
Chen
,
J. H.
, 2004, “
Intelligence Evolutionary Algorithms for Large Parameter Optimization Problems
,”
IEEE Trans. Evol. Comput.
,
8
, pp.
522
541
.
19.
Youssef
,
K. H.
,
Yousef
,
H. A.
,
Sebakhy
,
O. A.
, and
Wahba
,
M. A.
, 2009, “
Adaptive Fuzzy APSO Based Inverse Tracking-Controller With an Application to DC Motors
,”
Expert Syst. Appl.
,
36
, pp.
3454
3458
.
20.
Patel
,
V. K.
, and
Rao
,
R. V.
, 2010, “
Design Optimization of Shell-and-Tube Heat Exchanger Using Particle Swarm Optimization Technique
,”
Appl. Therm. Eng.
,
30
, pp.
1417
1425
.
21.
Medeiros
,
J. A. C. C.
, and
Schirru
,
R.
, 2008, “
Identification of Nuclear Power Plant Transients Using the Particle Swarm Optimization Algorithm
,”
Ann. Nucl. Energy
,
35
, pp.
576
582
.
22.
Lee
,
K. H.
,
Baek
,
S. W.
, and
Kim
,
K. W.
, 2008, “
Inverse Radiation Analysis Using Repulsive Particle Swarm Optimization Algorithm
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2772
2783
.
23.
Engelbrecht
,
A. P.
, 2007,
Computational Intelligence, an Introduction
,
John Wiley & Sons
,
Chichester, England
.
24.
Chen
,
C. C.
, 2011, “
Two-Layer Particle Swarm Optimization for Unconstrained Optimization Problems
,”
Appl. Soft Comput.
,
1
, pp.
295
304
.
You do not currently have access to this content.