We study, using pump-probe optical methods with a time resolution of 1 ms, heat transfer when a series of water droplets impact a smooth surface whose temperature exceeds the boiling point. The volume of the individual water droplets is ≈10 nl, the time between droplets is ≈0.3 ms, and the number of water droplets in the series of droplets is 3, 20, or 100. In the temperature range 100 °C < T < 150 °C, our measurements of the heat transfer, and the residence time of water in contact with the surface, show that nearly all of the dispensed water vaporizes, but more rapidly, the higher the temperature. At higher temperatures, 150 °C < T < 220 °C, droplet shattering plays an increasingly important role in limiting heat transfer and, as a result, the volume of water evaporated and residence time decrease strongly with increasing temperature.

References

1.
Kelly
,
K. M.
,
Nelson
,
J. S.
,
Lask
,
G. P.
,
Geronemus
,
R. G.
, and
Bernstein
,
L. J.
, 1999, “
Cryogen Spray Cooling in Combination With Nonablative Laser Treatment of Facial Rhytides
,”
Arch. Dermatol.
,
135
, pp.
691
694
.
2.
Mudawar
,
I.
, 2001, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
, pp.
122
141
.
3.
Salge
,
J. R.
,
Dreyer
,
B. J.
,
Dauenhauer
,
P. J.
, and
Schmidt
,
L. D.
, 2006, “
Renewable Hydrogen From Nonvolatile Fuels by Reactive Flash Volatilization
,”
Science
,
314
, pp.
801
804
.
4.
Yarin
,
A. L.
, 2006, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
159
192
.
5.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
, 1997, “
Effects of Surface Roughness on Water Droplet Impact History and Heat Transfer Regimes
,”
Int. J. Heat Mass Transfer
,
40
, pp.
73
88
.
6.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
, 1997, “
Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface
,”
Int. J. Heat Mass Transfer
,
40
, pp.
247
267
.
7.
Klassen
,
M.
,
Marzo
,
M.
, and
Sirkis
,
J.
, 1992, “
Infrared Thermography of Dropwise Evaporative Cooling
,”
Exp. Therm. Fluid Sci.
,
5
, pp.
136
141
.
8.
Paik
,
S. W.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Pratt
,
D. M.
, 2007, “
Spatially and Temporally Resolved Temperature Measurements for Slow Evaporating Sessile Drops Heated by a Microfabricated Heater Array
,”
ASME J. Heat Transfer
,
129
, pp.
966
976
.
9.
Salazar
,
V. M.
,
Gonzalez
,
J. E.
, and
Rivera
,
L. A.
, 2004, “
Measurement of Temperatures on In-Flight Water Droplets by Laser Induced Fluorescence Thermometry
,”
ASME J. Heat Transfer
,
126
, pp.
279
285
.
10.
Tarozzi
,
L.
,
Muscio
,
A.
, and
Tartarini
P.
, 2007, “
Experimental Tests of Dropwise Cooling on Infrared-Transparent Media
,”
Exp. Therm. Fluid Sci.
,
31
, pp.
857
865
.
11.
Chatzikyriakou
,
D.
,
Walker
,
S. P.
,
Hale.
C. P.
, and
Hewitt
,
G. F.
, 2011, “
The Measurement of Heat Transfer From Hot Surfaces to Non-Wetting Droplets
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1432
1440
.
12.
Bernardin
,
J. D.
, and
Mudawar
,
I.
, 2004, “
A Leidenfrost Point Model for Impinging Droplets and Sprays
,”
ASME J. Heat Transfer
,
126
, pp.
272
278
.
13.
Biance
,
A.-L.
,
Clanet
,
C.
, and
Quere
,
D.
, 2003, “
Leidenfrost Drops
,”
Phys. Fluids
,
15
, pp.
1632
1637
.
14.
Chandra
,
S.
, and
Avedisian
,
C. T.
, 1991, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. Math. Phys. Sci.
,
432
, pp.
13
41
.
15.
Castanet
,
G.
,
Liénart
,
T.
, and
Lemoine
,
F.
, 2009, “
Dynamics and Temperature of Droplets Impacting Onto a Heated Wall
,”
Int. J. Heat Mass Transfer
,
52
, pp.
670
679
.
16.
Hatta
,
N.
,
Fujimoto
,
H.
,
Kinoshita
,
K.
, and
Takuda
,
H.
, 1997, “
Experimental Study of Deformation Mechanism of a Water Droplet Impinging on Hot Metallic Surfaces Above the Leidenfrost Temperature
,”
J. Fluids Eng.
,
119
, pp.
692
699
.
17.
Chen
,
R. H.
,
Chiu
,
S. L.
, and
Lin
,
T. H.
, 2007, “
Resident Time of a Compound Drop Impinging on a Hot Surface
,”
App. Therm. Eng.
,
27
, pp.
2079
2085
.
18.
Richard
,
D.
,
Clanet
,
C.
, and
Quere
,
D.
, 2002, “
Contact Time of a Bouncing Drop
,”
Nature (London)
,
417
, pp.
811
.
19.
Makino
,
K.
, and
Michiyoshi
,
I.
, 1984, “
The Behavior of a Water Droplet on Heated Surfaces
,”
Int. J. Heat Mass Transfer
,
27
, pp.
781
791
.
20.
Min
,
C.-K.
,
Park
,
J. Y.
,
Cahill
,
D. G.
, and
Granick
,
S.
, 2009, “
Fast, Spatially Resolved Thermometry of Si and GaP Crystals Using Pump-Probe Two-Photon Absorption
,”
J. Appl. Phys.
,
106
, p.
013102
.
21.
Turns
,
S. R.
, 1996,
An Introduction to Combustion
,
McGraw-Hill, Inc.
, New York.
22.
Deegan
,
R. D.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Witten
,
T. A.
, 1997, “
Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops
,”
Nature (London)
,
389
, pp.
827
829
.
23.
Sefiane
,
K.
,
Tadrist
,
L.
, and
Douglas
,
M.
, 2003, “
Experimental Study of Evaporating Water-Ethanol Mixture Sessile Drop: Influence of Concentration
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4527
4534
.
24.
Masoud
,
H.
, and
Felske
,
J. D.
, 2009, “
Analytical Solution for Stokes Flow Inside an Evaporating Sessile Drop: Spherical and Cylindrical Cap Shapes
,”
Phys. Fluids
,
21
, p.
042102
.
25.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
, pp.
793
818
.
26.
Wilson
,
O. M.
,
Hu
,
X.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2002, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,”
Phys. Rev. B
,
66
, p.
224301
.
27.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2006, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
, p.
186101
.
28.
Cahill
,
D. G.
, 2004, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
, pp.
5119
5122
.
29.
Karl
,
A.
, and
Frohn
,
A.
, 2000, “
Experimental Investigation of Interaction Processes Between Droplets and Hot Walls
,”
Phys. Fluids
,
12
, pp.
785
796
.
30.
Xiong
,
T. Y.
, and
Yuen
,
M. C.
, 1991, “
Evaporation of a Liquid Droplet on a Hot Plate
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1881
1894
.
31.
Katto
,
Y.
, 1994, “
Critical Heat Flux
,”
Int. J. Multiphase Flow
,
20
, pp.
53
90
.
32.
Bernardin
,
J. D.
, and
Mudawar
,
I.
, 2007, “
Transition Boiling Heat Transfer of Droplet Streams and Sprays
,”
ASME J. Heat Transfer
,
129
, pp.
1605
1610
.
33.
Mudawar
,
I.
, and
Bowers
,
M. B.
, 1999, “
Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling–I: CHF Data and Parametric Effects for Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1405
1428
.
You do not currently have access to this content.