This paper presents a numerical solution of the hyperbolic heat conduction equation in a thermal barrier coating (TBC) structure under an imposed heat flux on the exterior of the TBC. The non-Fourier heat conduction equation is used to model the heat conduction in the TBC system that predicts the heat flux and the temperature distribution. This study presents a more realistic approach to evaluate in-service performance of thin layers of TBCs typically found in hot sections of land based and aircraft gas turbine engines. In such ultrafast heat conduction systems, the orders of magnitude of the time and space dimensions are extremely short which renders the traditional Fourier conduction law, with its implicit assumption of infinite speed of thermal propagation, inaccurate. There is, therefore, the need for an advanced modeling approach for the thermal transport phenomenon taking place in microscale systems. A hyperbolic heat conduction model can be used to predict accurately the transient temperature distribution of thermal barrier structures of turbine blades. The hyperbolic heat conduction equations are solved numerically using a new numerical scheme codenamed the mean value finite volume method (MVFVM). The numerical method yields minimal numerical dissipation and dispersion errors and captures the discontinuities such as the thermal wave front in the solution with reliable accuracy. Compared with some traditional numerical methods, the MVFVM method provides the ability to model the behavior of the single phase lag thermal wave following its reflection from domain boundary surfaces. In addition, parametric studies of properties of the substrate on the temperature and the heat flux distributions in the TBC revealed that relaxation time of the substrate material, unlike the thermal diffusivity and thermal conductivity has very little effect on the transient thermal response in the TBC. The study further showed that for thin film structures subject to short time durations of heat flux, the hyperbolic model yields more realistic results than the parabolic model.

References

1.
Akwaboa
,
S.
,
Mensah
,
P.
, and
Diwan
,
R.
,
2010
, “
Effect of Thermal Radiation on Air Plasma Spray (APS) Coated Gas Turbine Blade
,”
Proceedings of ASME Turbo Expo Congress and Exposition
,
Glasgow, UK
,
June
14–18
.
2.
Goodson
,
K. E.
, and
Flik
,
M. I.
,
1993
, “
Electron and Phonon Thermal Conduction in Epitaxial High-Tc Superconducting Films
,”
ASME J. Heat Transfer
,
115
,
pp.
17
25
.10.1115/1.2910646
3.
Xu
,
X.
,
Grigoropoulos
,
C. P.
, and
Russo
,
R. E.
,
1995
, “
Transient Temperature During Pulsed Excimer Laser Heating of Thin Polysilicon Films Obtained by Optical Reflectivity Measurement
,”
ASME J. Heat Transfer
,
117
,
pp.
17
24
.10.1115/1.2822301
4.
Mitra
,
K.
,
Kumar
,
S.
,
Vedavarz
,
A.
, and
Moallemi
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
117
,
pp.
568
573
.10.1115/1.2822615
5.
Cattaneo
,
C.
,
1958
, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Acad. Sci., Paris, C. R.
,
247
,
pp.
431
433
.
6.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Theorie Continue de l'Equation de la Chaleur
,”
Acad. Sci., Paris, C. R.
,
246
,
pp.
3154
3155
.
7.
Sieniutycz
,
S.
,
1977
, “
The Variational Principles of Classical Type for Non-Coupled Non-Stationary Irreversible Transport Processes With Convective Motion and Relaxation
,”
Int. J. Heat Mass Transfer
,
20
,
pp.
1221
1231
.10.1016/0017-9310(77)90131-4
8.
Lor
,
W.-B.
, and
Chu
,
H.-S.
,
1999
, “
Hyperbolic Heat Conduction in Thin-film High Tc Superconductors With Interface Thermal Resistance
,”
J. Cryog.
,
39
,
pp.
739
750
.10.1016/S0011-2275(99)00085-5
9.
Baumeister
,
K. J.
, and
Hamill
,
T. D.
,
1969
, “
Hyperbolic Heat-Conduction Equation—A Solution for the Semi-Infinite Body Problem
,”
ASME J. Heat Transfer
,
91
,
pp.
543
548
.10.1115/1.3580239
10.
Tang
,
Z.-M.
, and
Yang
,
W.-J.
,
1997
, “
Non-Fourier Heat Conduction in a Thin Film Subjected to a Sudden Temperature Change on Two Sides
,”
J. Non-Equilib. Thermodyn.
,
22
,
pp.
75
87
.10.1515/jnet.1997.22.1.75
11.
Maurer
,
M. J.
, and
Thompson
,
H. A.
,
1973
, “
Non-Fourier Effects at High Heat Flux
,”
ASME J. Heat Transfer
,
95
,
pp.
284
286
.10.1115/1.3450051
12.
Ozisik
,
M. N.
, and
Vick
,
B.
,
1984
, “
Propagation and Reflection of Thermal Waves in a Finite Medium
,”
Int. J. Heat Mass Transfer
,
27
,
pp.
1845
1854
.10.1016/0017-9310(84)90166-2
13.
de Hoog
,
F. R.
,
Knight
,
J. H.
, and
Stokes
,
A. N.
,
1982
, “
An Improved Method for Numerical Inversion of Laplace Transforms
,”
SIAM J. Sci. Stat. Comput.
,
3
,
pp.
357
366
.10.1137/0903022
14.
Kao
,
T. T.
,
1977
, “
Non-Fourier Heat Conduction in Thin Surface Layers
,”
ASME J. Heat Transfer
,
99
,
pp.
343
345
.10.1115/1.3450695
15.
Chou
,
Y.
, and
Yang
,
R.
,
2008
, “
Application of CESE Method to Simulate Non-Fourier Heat Conduction in Finite Medium With Pulse Surface Heating
,”
Int. J. Heat Mass Transfer
,
51
,
pp.
3525
3534
.10.1016/j.ijheatmasstransfer.2007.10.025
16.
Tan
,
Z.-M.
, and
Yang
,
W.-J.
,
1997
, “
Heat Transfer During Asymmetrical Collision of Thermal Waves in a Thin Film
,”
Int. J. Heat Mass Transfer
,
40
,
pp.
3999
4006
.10.1016/S0017-9310(97)00079-3
17.
Jarvis
,
E. A.
, and
Carter
,
E. A.
,
2002
, “
The Role of Reactive Elements in Thermal Barrier Coatings
,”
Proceedings of Computing in Science and Engineering
.
You do not currently have access to this content.