Heat recovery steam generator (HRSG) is a critically important subsystem of a combined cycle. The global objective of a HRSG is to heat the stream of water. The HRSG is composed of three major sections, including an economizer, an evaporator, and a superheater. In this study, a water tube HRSG is considered and its main design features are deduced from the minimization of the entropy generation by using the constructal theory. Entropy generation is obtained by considering all irreversibilities associated with the processes. Considering the minimum total entropy generation as the objective function, the optimum parameters in the HRSG unit are derived by using the genetic algorithm method under the fixed total volume condition. In the present work, the number and arrangement of the tubes, the optimal diameters of tubes and spacing between adjacent tubes for three main sections, total length, width, and height of the HRSG unit and the water flow rate are significant features of the flow configuration inducted by the constructal design. Furthermore, the effect of changing in the size of the flow system on the flow architecture is determined.

References

1.
Nag
,
P. K.
, and
De
,
S.
,
1997
, “
Design and Operation of a Heat Recovery Steam Generator With Minimum Irreversibility
,”
J. Appl. Thermal Eng.
,
17
,
pp.
385
391
.10.1016/S1359-4311(96)00033-6
2.
Haglind
,
F.
,
2008
, “
A Review on the Use of Gas and Steam Turbine Combined Cycles as Prime Movers for Large Ships. Part I: Background and Design
,”
J. Energy Convers. Manage.
,
49
,
pp.
3458
3467
.10.1016/j.enconman.2008.08.005
3.
Haglind
,
F.
,
2008
, “
A Review on the Use of Gas and Steam Turbine Combined Cycles as Prime Movers for Large Ships. Part II: Previous Work and Implications
,”
J. Energy Convers. Manage.
,
49
,
pp.
3468
3475
.10.1016/j.enconman.2008.08.004
4.
Valdes
,
M.
, and
Rapun
,
J. L.
,
2001
, “
Optimization of Heat Recovery Steam Generator for Combined Cycle Gas Turbine Power Plants
,”
J. Appl. Therm. Eng
,,
21
,
pp.
1149
1159
.10.1016/S1359-4311(00)00110-1
5.
Valdés
,
M.
,
Rovira
,
A.
, and
Durán
,
M. D.
,
2004
, “
Influence of the Heat Recovery Steam Generator Design Parameters on the Thermoeconomic Performances of Combined Cycle Gas Turbine Power Plants
,”
Int. J. Energy Res.
,
28
,
pp.
1243
1254
.10.1002/er.1026
6.
Franco
,
A.
, and
Giannini
,
N.
,
2005
, “
Optimum Thermal Design of Modular Compact Heat Exchangers Structure for Heat Recovery Steam Generators
,”
J. Appl. Therm. Eng.
,
25
,
pp.
1293
1313
.10.1016/j.applthermaleng.2004.08.018
7.
Nord
,
O. L.
, and
Bolland
,
O.
,
2011
, “
HRSG Design for Integrated Reforming Combined Cycle With CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011702
.10.1115/1.4001822
8.
Reddy
,
B. V.
,
Ramkiran
,
G.
,
Ashok
,
K. K.
, and
Nag
,
P. K.
,
2002
, “
Second Law Analysis of a Waste Heat Recovery Steam Generator
,”
Int. J. Heat Mass Transfer
,
45
,
pp.
1807
1814
.10.1016/S0017-9310(01)00293-9
9.
Mohagheghi
,
M.
, and
Shayegan
,
J.
,
2009
, “
Thermodynamic Optimization of Design Variables and Heat Exchangers Layout in HRSGs for CCGT, Using Genetic Algorithm
,”
J. Appl. Therm. Eng.
,
29
,
pp.
290
299
.10.1016/j.applthermaleng.2008.02.035
10.
Franco
,
A.
, and
Giannini
,
N.
,
2006
, “
A General Method for the Optimum Design of Heat Recovery Steam Generator
,”
Energy
,
31
,
pp.
3342
3361
.10.1016/j.energy.2006.03.005
11.
Behbahani-nia
,
A.
,
Sayadi
,
S.
, and
Soleymani
,
M.
,
2010
, “
Thermoeconomic Optimization of the Pinch Point and Gas-Side Velocity in Heat Recovery Steam Generators
,”
Proc. IMechE Part A: J. Power and Energy
,
224
,
pp.
761
771
.10.1243/09576509JPE953
12.
Karrabi
,
H.
, and
Rasoulipour
,
S.
,
2010
, “
Second Law Based Analysis of Supplementary Firing Effects on the Heat Recovery Steam Generator in a Combined Cycle Power Plant
,”
ASME 10th Biennial Conference on Engineering Systems Design and Analysis (ESDA2010)
,
Istanbul, Turkey
,
Vol.
1
,
pp.
201
209
.
13.
Ebrahimi
,
P.
,
Karrabi
,
H.
,
Ghadami
,
S.
,
Barzegar
,
H.
, Rasoulipour, S., and Kebriyaie, M.,
2010
, “
Thermodynamic Modeling and Optimization of Cogeneration Heat and Power System Using Evolutionary Algorithm (Genetic Algorithm)
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air (GT2010)
,
Glasgow, UK
, Paper No.
GT2010-23026
,
pp.
745
752
.
14.
Bejan
,
A.
,
2000
, “
From Heat Transfer Principles to Shape and Structure in Nature: Constructal Theory
,”
ASME J. Heat Transfer
,
122
(
3
),
pp.
430
449
.10.1115/1.1288406
15.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
New York
.
16.
Yong
,
S. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2009
, “
Constructal Steam Generator Architecture
,”
Int. J. Heat Mass Transfer
,
52
,
pp.
2362
2369
.10.1016/j.ijheatmasstransfer.2008.10.021
17.
Kim
,
Y.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2011
, “
Steam Generator Structure: Continuous Model and Constructal Design
,”
Int. J. Energy Res.
,
35
,
pp.
336
345
.10.1002/er.1694
18.
Bejan
,
A.
,
1997
,
Advanced Engineering Thermodynamics
, 2nd ed.,
Wiley
,
New York
.
19.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge
.
20.
Bejan
,
A.
, and
Lorente
,
S.
,
2005
, “
Constructal Multi-Scale and Multi-Objective Structures
,”
Int. J. Energy Res.
,
29
,
pp.
689
710
.10.1002/er.1100
21.
Mehrgoo
,
M.
, and
Amidpour
,
M.
,
2011
, “
Constructal Design of Humidification–Dehumidification Desalination Unit Architecture
,”
Desalination
,
271
,
pp.
62
71
.10.1016/j.desal.2010.12.011
22.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2011
, “
Bejan's Constructal Theory Analysis of Gas-Liquid Cooled Finned Modules
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071801
.10.1115/1.4003556
23.
Lorenzini
,
G.
, and
Corrêa
,
R. L.
,
2011
, “
Constructal Design of Complex Assembly of Fins
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081902
.10.1115/1.4003710
24.
Kuwahara
,
F.
,
Sano
,
Y.
,
Liu
,
J.
, and
Nakayama
,
A.
,
2009
, “
A Porous Media Approach for Bifurcating Flow and Mass Transfer in a Human Lung
,”
ASME J. Heat Transfer
,
131
(
10
), p.
101013
.10.1115/1.3180699
25.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2009
, “
A Bejan's Constructal Theory Approach to the Overall Optimization of Heat Exchanging Finned Modules With Air in Forced Convection and Laminar Flow Condition
,”
ASME J. Heat Transfer
,
131
(
8
), p.
081801
.10.1115/1.3109996
26.
Azad
,
A. V.
, and
Amidpour
,
M.
,
2011
, “
Economic Optimization of Shell and Tube Heat Exchanger Based on Constructal Theory
,”
Energy
,
36
,
pp.
1087
1096
.10.1016/j.energy.2010.11.041
27.
Bai
,
C.
, and
Wang
,
L.
,
2010
, “
Constructal Allocation of Nanoparticles in Nanofluids
,”
ASME J. Heat Transfer
,
132
(
5
), p.
052404
.10.1115/1.4000473
28.
Biserni
,
C.
,
Rocha
,
L. A. O
,
Stanescu
,
G.
, and
Lorenzini
,
E.
,
2007
, “
Constructal Constructal H-Shaped Cavities According to Bejan's Theory,
Int. J. Heat Mass Transfer
,
50
,
pp.
2132
2138
.10.1016/j.ijheatmasstransfer.2006.11.006
29.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O
,
2011
, “
Geometric Optimization of Isothermal Cavities According to Bejan's Theory
,”
Int. J. Heat Mass Transfer
,
54
,
pp.
3868
3873
.10.1016/j.ijheatmasstransfer.2011.04.042
30.
Jassim
,
E.
, and
Muzychka
,
Y. S.
,
2010
, “
Optimal Distribution of Heat Sources in Convergent Channels Cooled by Laminar Forced Convection
,”
ASME J. Heat Transfer
,
132
(
1
), p.
011701
.10.1115/1.3194760
31.
da Silva
,
A. K.
, and
Bejan
,
A.
,
2005
, “
Constructal Design: The Generation of Multi-Scale Heat and Fluid Flow Structures
,”
ASME J. Heat Transfer
,
127
(
8
),
p.
799
.10.1115/1.2032867
32.
Bejan
,
A.
, and
Lorente
,
S.
,
2011
, “
The Constructal Law and the Design of the Biosphere: Nature and Globalization
,”
ASME J. Heat Transfer
,
133
(
1
), p.
011001
.10.1115/1.4002223
33.
Ganaphathy
,
V.
,
2003
,
Industrial Boilers and Heat Recovery Steam Generators
,
Marcel Dekker
,
New York
.
34.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
You do not currently have access to this content.