A continuum approach to the thermomass theory for nonlinear heat transport is developed and its compatibility with the general framework of continuum thermodynamics is investigated. The heat flux is supposed to depend on the absolute temperature together with a vectorial internal variable, which is proportional to the drift velocity of the heat carriers. A generalized heat-transport equation, which is capable to bring Fourier, Maxwell–Cattaneo–Vernotte and thermomass-theory equations as special cases is derived. Propagation of heat waves along a nonequilibrium steady state is analyzed as well.

References

1.
Boltzmann
,
L.
,
1902
,
Leçons sur la théorie des gaz
,
Gauthier-Villars
,
Paris
.
2.
Cattaneo
,
C.
,
1948
, “
Sulla conduzione del calore
,”
Atti Semin. Mat. Fis. Univ. Modena
,
3
,
pp.
83
101
.
3.
Jou
,
D.
,
Casas-Vázquez
,
J.
,
Lebon
,
G.
, and
Grmela
,
M.
,
2005
, “
A Phenomenological Scaling Approach for Heat Transport in Nano-Systems
,”
Appl. Math. Lett.
,
18
,
pp.
963
967
.10.1016/j.aml.2004.06.026
4.
Alvarez
,
F. X.
, and
Jou
,
D.
,
2007
, “
Memory and Nonlocal Effects in Heat Transports: From Diffusive to Ballistic Regimes
,”
Appl. Phys. Lett.
,
90
, p.
083109
.10.1063/1.2645110
5.
Tzou
,
D. Y.
,
2011
, “
Nonlocal Behavior in Phonon Transport
,”
Int. J. Heat Mass Transfer
,
54
,
pp.
475
481
.10.1016/j.ijheatmasstransfer.2010.09.022
6.
Lebon
,
G.
,
Jou
,
D.
, and
Casas-Vázquez
,
J.
,
2008
,
Understanding Nonequilibrium Thermodynamics
,
Springer
,
Berlin
.
7.
Cimmelli
,
V. A.
,
Sellitto
,
A.
, and
Jou
,
D.
,
2009
, “
Nonlocal Effects and Second Sound in a Nonequilibrium Steady State
,”
Phys. Rev. B
,
79
, p.
014303
.10.1103/PhysRevB.79.014303
8.
Cimmelli
,
V. A.
,
Sellitto
,
A.
, and
Jou
,
D.
,
2010
, “
Nonequilibrium Temperatures, Heat Waves, and Nonlinear Heat Transport Equations
,”
Phys. Rev. B
,
81
, p.
054301
.10.1103/PhysRevB.81.054301
9.
Cimmelli
,
V. A.
,
2009
, “
Different Thermodynamic Theories and Different Heat Conduction Laws
,”
J. Non-Equilib. Thermodyn.
,
34
,
pp.
299
333
.10.1515/JNETDY.2009.016
10.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
,
2010
,
Extended Irreversible Thermodynamics
, 4th revised ed.,
Springer
,
Berlin
.
11.
Cimmelli
,
V. A.
,
Sellitto
,
A.
, and
Jou
,
D.
,
2010
, “
Nonlinear Evolution and Stability of the Heat Flow in Nanosystems: Beyond Linear Phonon Hydrodynamics
,”
Phys. Rev. B
,
82
, p.
184302
.10.1103/PhysRevB.82.184302
12.
Guyer
,
R. A.
, and
Krumhansl
,
J. A.
,
1966
, “
Solution of the Linearized Phonon Boltzmann Equation
,”
Phys. Rev.
,
148
,
pp.
766
778
.10.1103/PhysRev.148.766
13.
Chen
,
G.
,
2001
, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
,
86
,
pp.
2297
2300
.10.1103/PhysRevLett.86.2297
14.
Tzou
,
D. Y.
,
1997
,
Macro to Micro-Scale Heat Transfer. The Lagging Behaviour
,
Taylor and Francis
,
New York
.
15.
Guo
,
Z.-Y.
,
2006
, “
Motion and Transfer of Thermal Mass—Thermal Mass and Thermon Gas
,”
J. Eng. Thermophys.
,
27
,
pp.
631
634
.CNKI:SUN:GCRB.0.2007-01-028
16.
Cao
,
B.-Y.
, and
Guo
,
Z.-Y.
,
2007
, “
Equation of Motion of a Phonon Gas and Non-Fourier Heat Conduction
,”
J. Appl. Phys.
,
102
, p.
053503
.10.1063/1.2775215
17.
Guo
,
Z.-Y.
, and
Hou
,
Q.-W.
,
2010
, “
Thermal Wave Based on the Thermomass Model
,”
ASME J. Heat Transfer
,
132
, p.
072403
.10.1115/1.4000987
18.
Tzou
,
D. Y.
, and
Guo
,
Z.-Y.
,
2010
, “
Nonlocal Behavior in Thermal Lagging
,”
Int. J. Therm. Sci.
,
49
,
pp.
1133
1137
.10.1016/j.ijthermalsci.2010.01.022
19.
Dong
,
Y.
,
Cao
,
B.-Y.
, and
Guo
,
Z.-Y.
,
2011
, “
Generalized Heat Conduction Laws Based on Thermomass Theory and Phonon Hydrodynamics
,”
J. Appl. Phys.
,
110
, p.
063504
.10.1063/1.3634113
20.
Wang
,
M.
,
Yang
,
N.
, and
Guo
,
Z.-Y.
,
2011
, “
Non-Fourier Heat Conductions in Nanomaterials
,”
J. Appl. Phys.
,
110
, p.
064310
.10.1063/1.3634078
21.
Guo
,
Z.-Y.
,
Cao
,
B.-Y.
,
Zhu
,
H.-Y.
, and
Zhang
,
Q.-G.
,
2007
, “
State Equation of Phonon Gas and Conservation Equations for Phonon Gas Motion
,”
Acta Phys. Sin.
,
56
,
pp.
3306
3311
. Available at http://wulixb.iphy.ac.cn/EN/abstract/abstract13003.shtml
22.
Wang
,
M.
,
Cao
,
B.-Y.
, and
Guo
,
Z.-Y.
,
2010
, “
General Heat Conduction Equations Based on the Thermomass Theory
,”
Front. Heat Mass Transfer
,
1
, p.
013004
.10.5098/hmt.v1.1.3004
23.
Alvarez
,
F. X.
,
Jou
,
D.
, and
Sellitto
,
A.
,
2009
, “
Phonon Hydrodynamics and Phonon-Boundary Scattering in Nanosystems
,”
J. Appl. Phys.
,
105
, p.
014317
.10.1063/1.3056136
24.
Maugin
,
G. A.
, and
Muschik
,
W.
,
1999
, “
Thermodynamics With Internal Variables. Part I. General Concepts
,”
J. Non-Equilib.Thermodyn.
,
19
,
pp.
217
249
.10.1515/jnet.1994.19.3.217
25.
Lebon
,
G.
,
Ruggieri
,
M.
, and
Valenti
,
A.
,
2008
, “
Extended Thermodynamics Revisited: Renormalized Flux Variables and Second Sound in Rigid Solids
,”
J. Phys.: Condens. Matter
,
20
, p.
025223
.10.1088/0953-8984/20/02/025223
26.
Smith
,
G. F.
,
1971
, “
On Isotropic Functions of Symmetric Tensors, Skew-Symmetric Tensors and Vectors
,”
Int. J. Eng. Sci.
,
9
,
pp.
899
916
.10.1016/0020-7225(71)90023-1
27.
Wang
,
L. Q.
,
1994
, “
Generalized Fourier Law
,”
Int. J. Heat Mass Transfer
,
37
,
pp.
2627
2634
.10.1016/0017-9310(94)90380-8
28.
Cimmelli
,
V. A.
,
1998
, “
Thermodynamics of Anisotropic Solids Near Absolute Zero
,”
Math. Comput. Modell.
,
28
,
pp.
79
89
.10.1016/S0895-7177(98)00100-9
29.
Muschik
,
W.
, and
Ehrentraut
,
H.
,
1996
, “
An Amendment to the Second Law
,”
J. Non-Equilib. Thermodyn.
,
21
,
pp.
175
192
.10.1515/jnet.1996.21.2.175
30.
Wang
,
L. Q.
,
1997
, “
Frame-Indifferent and Positive-Definite Reynolds Stress-Strain Relation
,”
J. Fluid Mech.
,
352
,
pp.
341
358
.10.1017/S0022112097007532
31.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
,
pp.
597
613
.10.1063/1.1711937
32.
Truesdell
,
C. A.
,
1971
,
A First Course in Rational Continuum Mechanics
, 2nd revised ed.,
Academic Press
,
San Diego
.
33.
Gauster
,
W. B.
,
1971
, “
Low-Temperature Grüneisen Parameters for Silicon and Aluminum
,”
Phys. Rev. B
,
4
,
pp.
1288
1296
.10.1103/PhysRevB.4.1288
34.
Jou
,
D.
,
Lebon
,
G.
,
Casas-Vázquez
,
J.
, and
Muschik
,
W.
,
1998
, “
Weakly Nonlocal and Nonlinear Heat Transport in Rigid Solids
,”
J. Non-Equilib. Thermodyn.
,
23
,
pp.
176
191
.10.1515/jnet.1998.23.3.277
35.
Jou
,
D.
,
Lebon
,
G.
,
Mongioví
,
M. S.
, and
Peruzza
,
R. A.
,
2004
, “
Entropy Flux in Non-Equilibrium Thermodynamics
,”
Physica A
,
338
,
pp.
445
457
.10.1016/j.physa.2004.02.011
36.
Cimmelli
,
V. A.
,
2011
, “
Weakly Nonlocal Thermodynamics of Anisotropic Rigid Heat Conductors Revisited
,”
J. Non-Equilib. Thermodyn.
,
36
,
pp.
285
309
.10.1515/JNETDY.2011.018
37.
Criado-Sancho
,
M.
, and
Llebot
,
J. E.
,
1993
, “
Behavior of Entropy in Hyperbolic Heat Conduction
,”
Phys. Rev. E
,
47
,
pp.
4104
4107
.10.1103/PhysRevE.47.4104
38.
Dong
,
Y.
, and
Guo
,
Z.-Y.
,
2011
, “
Entropy Analyses for Hyperbolic Heat Conduction Based on the Thermomass Model
,”
Int. J. Heat Mass Transfer
,
54
,
pp.
1924
1929
.10.1016/j.ijheatmasstransfer.2011.01.011
39.
Yin
,
M. T.
, and
Cohen
,
M. L.
,
1992
, “
Theory of Lattice-Dynamical Properties of Solids: Application to Si and Ge
,”
Phys. Rev. B
,
26
,
pp.
3259
3272
.10.1103/PhysRevB.26.3259
40.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
,
2003
, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
,
83
, p.
2934
.10.1063/1.1616981
41.
Casas-Vázquez
,
J.
, and
Jou
,
D.
,
1989
, “
Nonequilibrium Equations of State and Thermal Waves
,”
Acta Phys. Hung.
,
66
,
pp.
99
115
. Available at http://www.springerlink.com/content/2708nr7035238688/10.1007/BF03155783
42.
Sellitto
,
A.
,
Jou
,
D.
, and
Bafaluy
,
J.
,
2012
, “
Nonlocal Effects in Radial Heat Transport in Silicon Thin Layers and Graphene Sheets
,”
Proc. R. Soc. A
,
468
,
pp.
1217
1229
.10.1098/rspa.2011.0584
43.
Wang
,
M.
, and
Guo
,
Z.-Y.
,
2010
, “
Understanding of Temperature and Size Dependences of Effective Thermal Conductivity of Nanotubes
,”
Phys. Lett. A
,
374
,
pp.
4312
4315
.10.1016/j.physleta.2010.08.058
You do not currently have access to this content.